Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T14:48:19.993Z Has data issue: false hasContentIssue false

Light-dependent herbicides: an overview

Published online by Cambridge University Press:  20 January 2017

F. Dan Hess*
Affiliation:
AffyAgro Unit of Affymax Research Institute, 3410 Central Expressway, Santa Clara, CA 95051; [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, R. J., Norris, A. E., and Hess, F. D. 1994. Synthetic organic chemicals that act through the porphyrin pathway. Pages 1833 In Duke, S. O. and Rebeiz, C. A., eds. Porphyric Pesticides: Chemistry, Toxicology, and Pharmaceutical Applications. Washington, DC: American Chemical Society Symposium Series 559.CrossRefGoogle Scholar
Arntzen, C. J., Ditto, C. L., and Brewer, P. E. 1979. Chloroplast membrane alterations in triazine-resistant Amaranthus retroflexus biotypes. Proc. Natl. Acad. Sci. USA 76:278282.Google Scholar
Bartels, P. G. and Hyde, A. 1970. Choroplast development in 4-chloro-5-(dimethylamino)-2-(α,α,α-trifluoro-m-tolyl)-3(2H)-pyridazinone (Sandoz 6706)-treated wheat seedlings. Plant Physiol. 45:807810.Google Scholar
Böger, P. 1996. Mode of action of herbicides affecting carotenogensis. J. Pestic. Sci. 21:473478.CrossRefGoogle Scholar
Bowyer, J. R., Hallahan, B. J., Camilleri, P., and Howard, J. 1989. Mode of action studies on nitrodiphenyl ether herbicides. II. The role of photosynthetic electron transport in Scenedesmus obliquus . Plant Physiol. 89:674680.CrossRefGoogle ScholarPubMed
Bramley, P. M. and Pallett, K. E. 1993. Phytoene desaturase: a biochemical target of many bleaching herbicides. Proc. Brighton Crop Prot. Conf. Weeds 2:713722.Google Scholar
Brettel, K. 1997. Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim. Biophy. Acta Bioenergetics 1318:322373.CrossRefGoogle Scholar
Chauhan, N. P., Fatma, T., and Mishra, R. K. 1992. Protection of wheat chloroplasts from lipid peroxidation and loss of photosynthetic pigments by quercetin under strong illumination. J. Plant Physiol. 140:409413.Google Scholar
Chitnis, P. R. 1996. Update on photosynthetic electron transport: photosystem I. Plant Physiol. 111:661669.CrossRefGoogle Scholar
Cromartie, T. H., Fisher, K. J., and Grossman, J. N. 1999. The discovery of a novel site of action for herbicidal bisphosphonates. Pestic. Biochem. Physiol. 63:114126.CrossRefGoogle Scholar
Cunningham, F. X. Jr., and Gantt, E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49:557583.Google Scholar
Duke, S. O. and Kenyon, W. H. 1986. Effects of dimethazone (FMC 57020) on chloroplast development. II. Pigment synthesis and photosynthetic function in cowpea (Vigna unguiculata L.) primary leaves. Pestic. Biochem. Physiol. 25:1118.CrossRefGoogle Scholar
Duke, S. O., Paul, R. N., Becerril, J. M., and Schmidt, J. H. 1991. Clomazone causes accumulation of sesquiterpenoids in cotton (Gossypium hirsutum L.). Weed Sci. 39:339346.Google Scholar
Ensminger, M. P., Hess, F. D., and Bahr, J. T. 1985. Nitro free radical formation of diphenyl ether herbicides is not necessary for their toxic action. Pestic. Biochem. Physiol. 23:163170.CrossRefGoogle Scholar
Fadayomi, O. and Warren, G. F. 1976. The light requirement for herbicidal activity of diphenyl ethers. Weed Sci. 24:598600.Google Scholar
Fraser, P. D., Misawa, N., Linden, H., Yamano, S., Kobayashi, K., and Sandmann, G. 1992. Expression in Escherichia coli, purification and reactivation of the recombinant Erwinia uredovora phytoene desaturase. J. Biol. Chem. 267:1989119895.Google Scholar
Girotti, A. W. 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 39:15291542.CrossRefGoogle ScholarPubMed
Gonzáles-Moro, M. B., Lacuesta, M., Iriberri, N., Muñoz-Rueda, A., and Gonzáles-Murua, C. 1997. Comparative effects of PPT and AOA on photosynthesis and fluorescence chlorophyll parameters in Zea mays . J. Plant Physiol. 151:641648.CrossRefGoogle Scholar
Hankamer, B., Barber, J., and Boekema, E. J. 1997. Structure and membrane organization of photosystem II in green plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48:641671.Google Scholar
Haworth, P. and Hess, F. D. 1988. The generation of singlet oxygen (1O2) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis. Plant Physiol. 86:672676.CrossRefGoogle Scholar
Hippeli, S., Heiser, I., and Elstner, E. F. 1999. Activated oxygen and free radicals in pathology: new insights and analogies between animals and plants. Plant Physiol. Biochem. 37:167178.Google Scholar
Jacobs, J. M. and Jacobs, N. J. 1993. Porphyrin accumulation and export by isolated barley (Hordeum vulgare) plastids. Plant Physiol. 101:11811187.Google Scholar
Jacobs, J. M., Jacobs, N. J., Sherman, T. D., and Duke, S. O. 1991. Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organellar and plasma membrane enriched fractions of barley. Plant Physiol. 97:197203.CrossRefGoogle ScholarPubMed
Kunert, K. J. and Böger, P. 1981. The bleaching effect of the diphenyl ether oxyfluorfen. Weed Sci. 29:169173.Google Scholar
Lea, P. J. and Ridley, S. M. 1989. Glutamine synthetase and its inhibition. Pages 137170 In Dodge, A. D., ed. Herbicides and Plant Metabolism. Cambridge, UK: Cambridge University Press, Society of Experimental Biology Seminar Series 38.Google Scholar
Lee, D. L., Prisbylla, M. P., Cromartie, T. H., Dagarin, D. P., Howard, S. W., McLean-Provan, W., Ellis, M. K., Fraser, T., and Mutter, L. C. 1997. The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci. 45:601609.Google Scholar
Lee, H. J., Duke, M. V., and Duke, S. O. 1993. Cellular localization of protoporphyrinogen-oxidizing activities of etiolated barley (Hordeum vulgare L.) leaves. Plant Physiol. 102:881889.CrossRefGoogle ScholarPubMed
Lee, H. J. and Duke, S. O. 1994. Protoporphyrinogen IX-oxidizing activities involved in the mode of action of peroxidizing herbicides. J. Agric. Food Chem. 42:26102618.Google Scholar
Lehnen, L. P. Jr., Sherman, T. D., Becerril, J. M., and Duke, S. O. 1990. Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons. Pestic. Biochem. Physiol. 37:239248.Google Scholar
Lichtenthaler, H. K. 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50:4765.Google Scholar
Lützow, M., Beyer, P., and Kleinig, H. 1990. The herbicide Command does not inhibit the prenyl diphosphate-forming enzymes in plastids. Z. Naturforsch. 45c:856858.CrossRefGoogle Scholar
Lydon, J. and Duke, S. O. 1988. Porphyrin synthesis is required for photobleaching activity of the p-nitrosubstituted diphenyl ether herbicides. Pestic. Biochem. Physiol. 31:7483.CrossRefGoogle Scholar
Manderscheid, R. and Wild, A. 1986. Studies on the mechanism of inhibition by phosphinothricin of glutamine synthetase isolated from Triticum aestivum L. J. Plant Physiol. 123:135142.CrossRefGoogle Scholar
Matringe, M., Camadro, J. M., Labbe, P., and Scalla, R. 1989. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem. J. 260:231235.Google Scholar
Matringe, M. and Scalla, R. 1987. Induction of tetrapyrrole accumulation by diphenyl ether-type herbicides. Proc. Br. Crop Prot. Conf. Weeds 3:981988.Google Scholar
Matringe, M. and Scalla, R. 1988a. Effects of acifluorfen-methyl on cucumber cotyledons: porphyrin accumulation. Pestic. Biochem. Physiol. 32:164172.Google Scholar
Matringe, M. and Scalla, R. 1988b. Studies on the mode of action of acifluorfen-methyl in nonchlorophyllous soybean cells. Plant Physiol. 86:619622.Google Scholar
Matsunaka, S. 1969. Acceptor of light energy in photoactivation of diphenyl ether herbicides. J. Agric. Food Chem. 17:171175.Google Scholar
Mayer, M. P., Bartlett, D. L., Beyer, P., and Kleinig, H. 1989. The in vitro mode of action of bleaching herbicides on the desaturation of 15-cis-phytoene and cis-ζ-carotene in isolated daffodil chromoplasts. Pestic. Biochem. Physiol. 34:111117.Google Scholar
Mayer, M. P., Nievelstein, V., and Beyer, P. 1992. Purification and characterization of a NADPH dependent oxidoreductase from chromoplasts of Narcissus pseudonarcissus: a redox-mediator possibly involved in carotenoid desaturation. Plant Physiol. Biochem. 30:389398.Google Scholar
Moskalenko, A. A. and Karapetyan, N. V. 1996. Structural role of carotenoids in photosynthetic membranes. Z. Naturforsch. 51c:763771.Google Scholar
Nicolaus, B., Sandmann, G., and Böger, P. 1993. Molecular aspects of herbicide action on protoporphyrinogen oxidase. Z. Naturforsch. 48c:326333.Google Scholar
Nicolaus, B., Sandmann, G., Watanabe, H., Wakabayashi, K., and Böger, P. 1989. Herbicide-induced peroxidation: influence of light and diuron on protoporphyrin IX formation. Pestic. Biochem. Physiol. 35:192201.Google Scholar
Noctor, G. and Foyer, C. H. 1998. Ascorbate and glutatione: keeping active oxygen under control. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49:249279.Google Scholar
Norris, S. R., Barrette, T. R., and DellaPenna, D. 1995. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7:21392149.Google Scholar
Oberhauser, V., Gaudin, J., Fonné-Pfister, R., and Schär, H.-P. 1998. New target enzyme(s) for bisphosphonates: inhibition of geranylgeranyl diphosphate synthase. Pestic. Biochem. Physiol. 60:111117.Google Scholar
Orr, G. L. and Hess, F. D. 1982. Mechanism of action of the diphenyl ether herbicide acifluorfen-methyl in excised cucumber (Cucumis sativus L.) cotyledons. Plant Physiol. 69:502507.CrossRefGoogle ScholarPubMed
Pallett, K. E., Little, J. P., Sheekey, M., and Veerasekaran, P. 1998. The mode of action of isoxaflutole. I. Physiological effects, metabolism, and selectivity. Pestic. Biochem. Physiol. 62:113124.Google Scholar
Pfister, K., Steinback, K. E., Gardner, G., and Arntzen, C. J. 1981. Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc. Natl. Acad. Sci. USA 78:981985.Google Scholar
Reinbothe, S. and Reinbothe, C. 1996. Regulation of chlorophyll biosynthesis in angiosperms. Plant Physiol. 111:17.Google Scholar
Retzlaff, K. and Böger, P. 1996. An endoplasmic reticulum plant enzyme has protoporphyrinogen IX oxidase activity. Pestic. Biochem. Physiol. 54:105114.CrossRefGoogle Scholar
Sandmann, G. and Böger, P. 1986. Interference of dimethazone with formation of terpenoid compounds. Z. Naturforsch. 41c:729732.Google Scholar
Sandmann, G. and Böger, P. 1987. Interconversion of prenyl pyrophosphates and subsequent reactions in the presence of FMC 57020. Z. Naturforsch. 42c:803807.Google Scholar
Sandmann, G. and Böger, P. 1988. Accumulation of protoporphyrin IX in the presence of peroxiding herbicides. Z. Naturforsch. 43c:699704.Google Scholar
Sandmann, G., Böger, P., and Kumita, I. 1990. Atypical inhibition of phytoene desaturation by 2-(4-chloro-2-nitrobenzoyl)-5,5-dimethylcyclo-hexane-1,3-dione. Pestic. Sci. 30:353355.Google Scholar
Sandmann, G. and Fraser, P. D. 1993. Differential inhibition of phytoene desaturase from diverse origins and analysis of resistant cyanobacterial mutants. Z. Naturforsch. 48c:307311.Google Scholar
Sandmann, G., Linden, H., and Böger, P. 1989. Enzyme-kinetic studies on the interaction of norflurazon with phytoene desaturase. Z. Naturforsch. 44c:787790.Google Scholar
Sandmann, G., Misawa, N., and Böger, P. 1996. Steps towards genetic engineering of crops resistant against bleaching herbicides. Pages 189200 In Duke, S. O., ed. Herbicide-Resistant Crops: Agricultural, Economic, Environmental, Regulatory, and Technological Aspects. Boca Raton, FL: Lewis Publishers.Google Scholar
Saran, M., Michel, C., and Bors, W. 1998. Radical functions in vivo: a critical review of current concepts and hypotheses. Z. Naturforsch. 53c:210227.Google Scholar
Sauer, H., Wild, A., and Rühle, W. 1987. The effect of phosphinothricin (glufosinate) on photosynthesis. II. The causes of inhibition of photosynthesis. Z. Naturforsch. 42c:270278.Google Scholar
Scalla, R. and Matringe, M. 1994. Inhibitors of protoporphyrinogen oxidase as herbicides: diphenyl ethers and related photobleaching molecules. Rev. Weed Sci. 6:103132.Google Scholar
Schneider, C., Böger, P., and Sandmann, G. 1997. Phytoene desaturase: heterologous expression in an active state, purification, and biochemical properties. Protein Expr. Purif. 10:175179.Google Scholar
Schulz, A., Ort, O., Beyer, P., and Kleinig, H. 1993. SC-0051, a 2-benzoyl-cyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett. 318:162166.Google Scholar
Secor, J. 1994. Inhibition of barnyardgrass 4-hydroxyphenylpyruvate dioxygenase by sulcotrione. Plant Physiol. 106:14291433.Google Scholar
Seelye, J. F., Borst, W. M., King, G. A., Hannan, P. J., and Maddocks, D. 1995. Glutamine synthetase activity, ammonium accumulation and growth of callus cultures of Asparagus officinalis L. exposed to high ammonium or phosphinothricin. J. Plant Physiol. 146:686692.Google Scholar
Steinback, K. E., McIntosh, L., Bogorad, L., and Arntzen, C. J. 1981. Identification of the triazine receptor protein as a chloroplast gene product. Proc. Natl. Acad. Sci. USA 78:74637467.Google Scholar
Tietjen, K. G., Kluth, J. F., Andree, R., Haug, M., Lindig, M., Müller, K. H., Wroblowsky, H. J., and Trebst, A. 1991. The herbicide binding niche of photosystem II—a model. Pestic. Sci. 31:6572.CrossRefGoogle Scholar
Trebst, A. and Draber, W. 1986. Inhibitors of photosystem II and the topology of the herbicide and QB binding polypeptide in the thylakoid membrane. Photosyn. Res. 10:381392.Google Scholar
Tsiotis, G., McDermott, G., and Ghanotakis, D. 1996. Progress towards structural elucidation of photosystem II. Photosyn. Res. 50:93101.CrossRefGoogle ScholarPubMed
Vermaas, W. 1993. Molecular-biological approaches to analyze photosystem II structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:457481.Google Scholar
Viviani, F., Little, J. P., and Pallett, K. E. 1998. The mode of action of isoxaflutole. II. Characterization of the inhibition of carrot 4-hydroxyphenylpyruvate dioxygenase by the diketonitrile derivative of isoxaflutole. Pestic. Biochem. Physiol. 62:125134.Google Scholar
von Wettstein, D., Gough, S., and Kannangara, C. G. 1995. Chlorophyll biosynthesis. Plant Cell 7:10391057.Google Scholar
Wendler, C., Barniske, M., and Wild, A. 1990. Effect if phosphinothricin (glufosinate) on photosynthesis and photorespiration in C3 and C4 plants. Photosyn. Res. 24:5561.CrossRefGoogle Scholar
Wendler, C., Putzer, A., and Wild, A. 1992. Effect of glufosinate (phosphinothricin) and inhibitors of photorespiration on photosynthesis and ribulose-1,5-bisphosphate carboxylase activity. J. Plant Physiol. 139:666671.CrossRefGoogle Scholar
Wild, A. and Wendler, C. 1993. Inhibitory action of glufosinate on photosynthesis. Z. Naturforsch. 48c:369373.Google Scholar
Witkowski, D. A. and Halling, B. P. 1988. Accumulation of photodynamic tetrapyrroles induced by acifluorfen-methyl. Plant Physiol. 87:632637.Google Scholar
Witkowski, D. A. and Halling, B. P. 1989. Inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol. 90:12391242.Google Scholar
Xiong, J., Subramaniam, S., and Govindjee, . 1996. Modeling of the D1/D2 proteins and cofactors of the photosystem II reaction center: implications for herbicide and bicarbonate binding. Protein Sci. 5:20542073.Google Scholar
Yamato, S., Katagiri, M., and Ohkawa, H. 1994. Purification and characterization of a protoporphyrinogen-oxidizing enzyme with peroxidase activity and light-dependent herbicide resistance in tobacco cultured cells. Pestic. Biochem. Physiol. 50:7282.Google Scholar