Published online by Cambridge University Press: 12 June 2017
Sicklepod (Cassia obtusifolia L.) leaves and leaflets changed their orientation throughout 24-h periods. These endogenously controlled rhythmic movements resulted in dramatic changes in the percent projected leaf area (PPLA), the leaf area observed from directly above and expressed as a percentage of the total actual leaf area. The PPLA of sicklepod varied more than seven-fold throughout a 24-h period, being greatest during the day and least at night. Control of sicklepod with linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] applied postemergence at intervals throughout 24-h periods was greater from daytime applications than from late evening, night, and early morning applications. Percent control was highly correlated with PPLA, suggesting that rhythmic leaf movements and the resulting change in PPLA could be an important factor in determining the efficacy of postemergence herbicide applications on sicklepod by altering the area of the leaf surface most likely to intercept and retain herbicide spray from an over-the-top application. In addition to endogenously controlled leaf movements, we observed leaf movements caused by simulated cloud cover (80% shading). Shading increased the PPLA of sicklepod, suggesting that more leaf surface might be exposed to an over-the-top spray during cloudy periods than during sunny periods.