Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T09:24:48.204Z Has data issue: false hasContentIssue false

Isolation of acetolactate synthase homologs in common sunflower

Published online by Cambridge University Press:  20 January 2017

Micheal D. K. Owen
Affiliation:
Department of Agronomy, Iowa State University, Ames, IA 50011

Abstract

A common sunflower population from Howard, SD (HSD) was previously determined to be cross-resistant to imazethapyr and chlorimuron-ethyl, both acetolactate synthase–inhibiting (ALS) herbicides. Experiments were conducted to determine if target-site polymorphisms could act as a mechanism of ALS-inhibitor herbicide resistance in the HSD common sunflower. Approximately 1,600 nucleotides were amplified by polymerase chain reaction and sequenced from putative ALS gene(s) in common sunflower and Jerusalem artichoke. In sunflower, two different amplification products were detected that differed by a nine-basepair deletion. This suggested the presence of at least two ALS genes in common sunflower that could contribute to the herbicide resistance phenotype. In addition, an Ala205 to Val205 substitution was observed in several clones from resistant common sunflower (amino acid position is relative to the full-length mouse-ear cress ALS protein). Previously documented mutations at this position in other species indicated that it might play a vital role in conferring resistance to one or more ALS-inhibitor herbicides.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K., Baumgartner, J. R., Peterson, D. E., and Currie, R. S. 1998. Imazethapyr resistance in common sunflower (Helianthus annuus). Weed Sci 46:403407.Google Scholar
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:33893402.Google Scholar
Anonymous. 2002. Institute for Genomic Research—TIGR Database. www.tigr.org.Google Scholar
Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature 408:796815.Google Scholar
Arias, D. M. and Rieseberg, L. H. 1994. Gene flow between cultivated and wild sunflowers. Theor. Appl. Genet 89:655660.Google Scholar
Baumgartner, J. R., Al-Khatib, K., and Currie, R. S. 1997. Imazethapyr resistance in common sunflower. Proc. N. Cent. Weed Sci. Soc 52:162.Google Scholar
Baumgartner, J. R., Al-Khatib, K., and Currie, R. S. 1999. Cross-resistance of imazethapyr-resistant common sunflower (Helianthus annuus) to selected imidazolinone, sulfonylurea, and triazolopyrimidine herbicides. Weed Technol 13:489493.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem 270:1738117385.Google Scholar
Chang, A. K. and Duggleby, R. G. 1998. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem. J 33:765777.Google Scholar
Chipman, D., Barak, Z., and Schloss, J. V. 1998. Biosynthesis of 2-aceto-2 hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim. Biophys. Acta 1385:401419.CrossRefGoogle ScholarPubMed
Chong, C. K. and Choi, J. D. 2000. Amino acid residues conferring herbicide tolerance in tobacco acetolactate synthase. Biochem. Biophys. Res. Commun 279:462467.CrossRefGoogle ScholarPubMed
Chong, C. K., Shin, H. J., Chang, S. I., and Choi, J. D. 1999. Role of tryptophanyl residues in tobacco acetolactate synthase. Biochem. Biophys. Res. Commun 259:136140.CrossRefGoogle ScholarPubMed
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Physiology of Herbicide Action. Englewood, NJ: Prentice Hall. 441 p.Google Scholar
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:1315.Google Scholar
Eberlein, C. V., Guttieri, M. J., Mallory-Smith, C. A., Thill, D. C., and Baerg, R. J. 1997. Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lacuca serriola). Weed Sci 45:212217.Google Scholar
Foes, M. J., Liu, L., Vigue, G., Stoller, E. W., Wax, L. M., and Tranel, P. J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci 47:2127.Google Scholar
Gressel, J. 2002. Molecular Biology of Weed Control. London: Taylor and Francis. 504 p.Google Scholar
Grula, J. W., Hudspeth, R. L., Hobbs, S. L., and Anderson, D. M. 1995. Organization, inheritance, and expression of acetohydroxyacid synthase genes in the cotton allotetraploid Gossypium hirsutum . Plant Mol. Biol 28:837846.CrossRefGoogle ScholarPubMed
Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci 40:670676.Google Scholar
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci 43:175178.Google Scholar
Hartnett, M. E., Chui, C. F., Mauvais, C. J., McDevitt, R. E., Knowlton, S., Smith, J. K., Falco, S. C., and Mazur, B. J. 1990. Herbicide resistant plants carrying mutated acetolactate synthase genes. Am. Chem. Soc. Symp. Series 421:459473.Google Scholar
Haughn, G. W., Smith, J., Mazur, B., and Somerville, C. 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet 211:266271.Google Scholar
Hinz, J. R. R. and Owen, M. D. K. 1997. Acetolactate synthase resistance in a common waterhemp (Amaranthus rudis) population. Weed Technol 11:1318.CrossRefGoogle Scholar
Kushnir, L. G. 1977. Economic and technical efficiencies of different methods of pollination of agricultural crops. Pages 134145 in Melhichenko, A. N. ed. Pollination of Agricltural Crops by Bees. Volume 3. New Delhi, India: Amerind.Google Scholar
Lee, K. Y., Townsend, J., Tapperman, J., Black, M., Chui, C. F., Mazur, B., Dunsmuir, P., and Bedbrook, J. 1988. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J 7:12411248.CrossRefGoogle ScholarPubMed
Lee, Y., Sultana, R., and Pertea, G. et al. 2002. Cross-referencing eukaryotic genomes: TIGR orthologous gene alignments (TOGA). Genome Res 12:493502.Google Scholar
Lee, Y. T., Chang, A. K., and Duggleby, R. G. 1999. Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicdes. FEBS Lett 452:341345.CrossRefGoogle Scholar
Marshall, M. W., Al-Khatib, K., and Loughin, T. 2001. Gene flow, growth, and competitiveness in imazethapyr resistant common sunflower. Weed Sci 49:1421.Google Scholar
McNaughton, K. E., Lee, E. A., and Tardif, F. J. 2001. Mutations in the ALS gene conferring resistance to group II herbicides in redroot pigweed (Amaranthus retroflexus) and green pigweed (A. powellii). Weed Sci. Soc. Am 41:97. [Abstract].Google Scholar
Milliman, L. D., Reichers, D. E., Simmons, F. W., and Wax, L. M. 2000. Two biotypes of eastern black nightshade that are resistant to ALS-inhibiting herbicides. Proc. N. Cent. Weed Sci. Soc 55:86.Google Scholar
Ott, K. H., Kwagh, J. G., Stockton, G. W., Sidirov, V., and Kakefuda, K. 1996. Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J. Mol. Biol 263:359368.CrossRefGoogle ScholarPubMed
Ouellet, T., Rutledge, R. G., and , B. L. 1992. Members of the acetohydroxyacid synthase multigene family of Brassica napus have divergent patterns of expression. Plant J 2:321330.Google Scholar
Pang, S. S., Duggleby, R. G., and Guddat, L. W. 2002. Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. J. Mol. Biol 317:249262.Google Scholar
Pang, S. S., Guddat, L. W., and Duggleby, R. G. 2003. Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyace synthase. J. Biol. Chem 278:76397644.Google Scholar
Patzoldt, W. L. and Tranel, P. J. 2001. ALS mutations conferring herbicide resistance in waterhemp. Proc. N. Cent. Weed Sci. Soc 56:67.Google Scholar
Quackenbush, J., Cho, J., and Lee, D. et al. 2001. The TIGR Gene Indices: analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res 29:159164.CrossRefGoogle ScholarPubMed
Rogers, C. E., Thompson, T. E., and Seiler, G. J. 1982. Sunflower Species of the United States. Fargo, ND: National Sunflower Association. 75 p.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 83139 in Powles, S. B. and Holtum, J.A.M. eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: CRC.Google Scholar
Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. pp. 1.251.28.Google Scholar
Sathasivan, K., Haughn, G. W., and Murai, N. 1991. Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var. Columbia. Plant Physiol 97:10441050.Google Scholar
Stallings, G. P., Thill, D. C., Mallory-Smith, C. A., and Shafh, B. 1995. Pollen-mediated gene flow of sulfonylurea resistant kochia (Kochia scoparia). Weed Sci 43:95102.CrossRefGoogle Scholar
Subramanian, M., Bernasconi, P., and Hess, F. D. 1996. Approaches to assess the frequency of resistance development to new herbicides. Pages 18 in Proceedings of the Second International Weed Control Congress; Copenhagen, Denmark.Google Scholar
Subramanian, M. V., Hung, H., Dias, J. M., Miner, V. W., Butler, J. H., and Jachetta, J. J. 1990. Properties of mutant acetolactate synthases resistant to trizolopyrimidine sulfonanilide. Plant Physiol 94:239244.CrossRefGoogle ScholarPubMed
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700712.Google Scholar
White, A. D., Owen, M. D. K., Hartzler, R. G., and Cardina, J. 2002. Common sunflower resistance to acetolactate synthase inhibiting herbicides. Weed Sci 50:432437.Google Scholar
Woodworth, A., Bernasconi, P., Subramanian, M., and Rosen, B. 1996a. A second naturally occurring point mutation confers broad-based tolerance to acetolactate synthase inhibitors. Plant Physiol 111:105. [Symposium abstracts].Google Scholar
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996b. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus sp. is conferred by a Trp to Leu mutation in the ALS gene. Plant Physiol 111:1353.Google Scholar
Wright, T. R., Bascomb, N. F., Sturner, S. F., and Penner, D. 1998. Biochemical mechanism and molecular basis of ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections. Weed Sci 46:1323.CrossRefGoogle Scholar
Zhu, T., Mettenburg, K., Peterson, D. J., Tagliani, L., and Baszczynski, C. L. 2000. Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat. Biotechnol 18:555558.Google Scholar