Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T23:14:55.589Z Has data issue: false hasContentIssue false

The Involvement of Cork-Silica Cell Pairs in the Production of Wax Filaments in Johnsongrass (Sorghum halepense) Leaves

Published online by Cambridge University Press:  12 June 2017

Chester G. McWhorter
Affiliation:
South. Weed Sci. Lab., U.S. Dep. Agric., Agric. Res. Serv., Stoneville, MS 38776
Rex N. Paul
Affiliation:
South. Weed Sci. Lab., U.S. Dep. Agric., Agric. Res. Serv., Stoneville, MS 38776

Abstract

Wax filaments > 100 μm long on the epidermis of johnsongrass leaves and culms occurred only around the edge of costal cork-silica cell pairs and intercostal silica cells. Silica cells alternating with cork cells occurred in rows over veins. Solitary or occasionally paired cork-silica cells occurred between veins. The high silicon content of silica cells was verified with X-ray mapping of silicon. X-ray analysis also indicated that wax filaments contained silicon. Scanning electron micrographs (SEM) of dislodged intercostal silica cells showed that wax filaments emerged from an integument that surrounded the silica cell. It is theorized that at high ambient temperatures the silica gel in silica cells provides the localized cooling necessary to solidify liquid wax constituents as they are extruded onto the surface of the plant.

Type
Special Topics
Copyright
Copyright © 1989 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Atkin, D.S.J. and Hamilton, R. J. 1982. Surface of Sorghum bicolor . Pages 231236 in Cutler, D. F., Alvin, K. L., and Price, C. E., eds. The Plant Cuticle. Academic Press, London.Google Scholar
2. Baker, E. A. 1982. Chemistry and morphology of plant epicuticular waxes. Pages 139166 in Cutler, D. F., Alvin, K. L., and Price, C. E., eds. The Plant Cuticle. Academic Press, London.Google Scholar
3. Baker, E. A., Bukovac, M. J., and Hunt, G. M. 1982. Composition of tomato fruit cuticle as related to fruit growth and development. Pages 3344 in Cutler, D. F., Alvin, K. L., and Price, C. E., eds. The Plant Cuticle. Academic Press, London.Google Scholar
4. Blackman, E. and Parry, D. W. 1968. Opaline silica deposition in rye (Secale cereale L.). Ann. Bot. 32:199206.CrossRefGoogle Scholar
5. Brandenburg, D. M., Russell, S. D., Estes, J. R., and Chissoe, W. F. III. 1985. Backscattered electron imaging as a technique for visualizing silica bodies in grasses. Scanning Electron Microsc. 1985; IV. Pages 15091517.Google Scholar
6. Clarkson, D. T. and Hanson, J. B. 1980. The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 31:239298.CrossRefGoogle Scholar
7. Davis, R. W. 1987. Ultrastructure and analytical microscopy of silicon in the leaf cuticle of Ficus lyrata Warb. Bot. Gaz. 148: 318323.CrossRefGoogle Scholar
8. Edwards, J. S. 1966. Defence by smear: supercooling in the cornicle wax of aphids. Nature. 211:7374.CrossRefGoogle Scholar
9. Hallam, N. D. 1982. Fine structure of the leaf cuticle and the origin of leaf waxes. Pages 197214 in Cutler, D. F., Alvin, K. L., and Price, C. E., eds. The Plant Cuticle. Academic Press, London.Google Scholar
10. Holloway, P. J. 1982. The chemical constitution of plant cutins. Pages 4586 in Cutler, D. F., Alvin, K. L., and Price, C. E., eds. The Plant Cuticle. Academic Press, London.Google Scholar
11. Hull, H. M., Davis, D. G., and Stolzenberg, G. E. 1982. Action of adjuvants on plant surfaces. Pages 2667 in Hodgson, R. H., ed. Adjuvants for Herbicides. Weed Sci. Soc. Am., Champaign, IL.Google Scholar
12. Jeffree, C. E., Baker, E. A., and Holloway, P. V. 1976. Origins of the fine structure of plant epicuticular waxes. Pages 119158 in Dickinson, C. H. and Preece, T. F., eds. Microbiology of Aerial Plant Surfaces. Academic Press, New York.Google Scholar
13. Jones, L.P.H. and Milne, A. A. 1963. Studies of silica in the oat plant. I. Chemical and physical properties of the silica. Plant Soil 18:207220.CrossRefGoogle Scholar
14. Jones, L.P.H., Milne, A. A., and Wadham, S. M. 1963. Studies of silica in the oat plant. II. Distribution of silica in the plant. Plant Soil 18:358371.CrossRefGoogle Scholar
15. Kaufman, P. B., Bigelow, W. C., Petering, L. B., and Drogosz, F. B. 1969. Silica in developing epidermal cells of Avena internodes: electron microprobe analysis. Science 166:1051–1017.Google Scholar
16. Kaufman, P. B., Dayanandan, P. D., Franklin, C. I., and Takeoka, Y. 1985. Structure and function of silica bodies in the epidermal system of grass shoots. Ann. Bot. 55:487507.CrossRefGoogle Scholar
17. Kaufman, P. B., Dayanandan, P., Takeoka, Y., Bigelow, W. C., Jones, J. D., and Iler, R. 1981. Silica in shoots of higher plants. Pages 409449 in Silicon and Siliceous structures in Biological Systems. Springer-Verlag, New York.CrossRefGoogle Scholar
18. Kaufman, P. B., Petering, L. B., and Adams, P. A. 1969. Regulation of growth and cellular differentiation in developing Avena internodes by gibberellic acid and indole-3-acetic acid. Am. J. Bot. 56:918927.CrossRefGoogle Scholar
19. Kaufman, P. B., Petering, L. B., and Smith, J. G. 1970. Ultrastructural development of cork-silica cell pairs in Avena internodal epidermis. Bot. Gaz. 131:173185.CrossRefGoogle Scholar
20. Kaufman, P. B., Petering, L. B., Yocum, C. S., and Baic, D. 1970. Ultrastructural development of the stomatal apparatus in Avena internodal epidermis. Am. J. Bot. 57:3349.CrossRefGoogle Scholar
21. Lanning, F. C., Ponnaiya, B.W.Y., and Crumption, F. C. 1958. The chemical nature of silica in plants. Plant Physiol. 33:339343.CrossRefGoogle ScholarPubMed
22. Lessire, R., Abdul-Karim, T., and Cassagne, C. 1982. Origin of the wax very long chain fatty acids in leek, Allium porrum L., leaves: a plausible model. Pages 167180 in Cutler, D. F., Alvin, K. L., and Price, C. E., eds. The Plant Cuticle. Academic Press, London.Google Scholar
23. Lewin, J. C. and Reimann, B.E.F. 1969. Silicon and plant growth. Annu. Rev. Plant Physiol. 20:289304.CrossRefGoogle Scholar
24. Metcalfe, C. R. 1960. Pages 453455 in Anatomy of the Monocotyledons. I. Gramineae. Oxford Univ. Press, London.Google Scholar
25. Parry, D. W. and Smithson, F. 1958. Techniques for studying opaline silica in grass leaves. Ann. Bot. 22:543549.CrossRefGoogle Scholar
26. Postek, M. T. 1981. The occurrence of silica in the leaves of Magnolia grandiflora L. Bot. Gaz. 142:124134.CrossRefGoogle Scholar
27. Rentschler, I. 1971. Die Wasserbenetzbarkeit von Blattoberflachen und ihre submikroskopische Wachsstruktur. Planta 96:119135.CrossRefGoogle Scholar
28. Sanchez-Diaz, M. F., Hesketh, J. D., and Kramer, P. J. 1972. Wax filaments on sorghum leaves as seen with a scanning electron microscope. J. Ariz. Acad. Sci. 7:67.CrossRefGoogle Scholar
29. Sangster, A. G. 1970. Intracellular silica deposition in immature leaves in three species of the Gramineae. Ann. Bot. 34:245257.CrossRefGoogle Scholar
30. Sargent, J. A. 1966. The physiology of entry of herbicides into plants in relation to formulation. Proc. Br. Weed Control Conf. 8:804811.Google Scholar
31. Smith, L. C., Pownall, H., and Gotto, A. M. Jr. 1978. The plasma lipoproteins: structure and metabolism. Annu. Rev. Biochem. 47:751777.CrossRefGoogle ScholarPubMed
32. Von Wettstein-Knowles, P. 1974. Ultrastructure and origin of epicuticular wax tubes. J. Ultrastructure Res. 46:483498.CrossRefGoogle ScholarPubMed