Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T19:06:21.331Z Has data issue: false hasContentIssue false

Interference interactions of two rice cultivars and their F3 cross with barnyardgrass (Echinochloa crus-galli) in a replacement series study

Published online by Cambridge University Press:  20 January 2017

Leopoldo E. Estorninos Jr.
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Edward E. Gbur
Affiliation:
Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, AR 72701
Rebecca S. C. Chavez
Affiliation:
USDA–ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160

Abstract

Barnyardgrass (BYG) has been the most frequently reported troublesome weed in rice because it is an aggressive invader, is difficult to control, and reduces yields significantly. A replacement series study was conducted to determine how a naturally suppressive cultivar (T65∗2/TN 1; ‘PI 312777’), a nonsuppressive cultivar (‘Lemont’), and an F3 cross between the two (‘PI 312777 × Lemont’) would interfere with BYG in the southern United States. The rice cultivars did not differentially affect BYG height. The PI 312777 produced more tillers and greater shoot dry weight but was only moderately competitive (relative yield [RY]) or aggressive (relative crowding coefficient) against BYG. Competitiveness at 2:2 rice and BYG mixture proportion and replacement series illustrations on RYs for the number of tillers and shoot dry weights for the three rice cultivars indicated that PI 312777 suppressed BYG growth relatively better than the other two cultivars. Plant-for-plant, PI 312777 was more competitive than Lemont. PI 312777 × Lemont suppressed BYG relatively less than did PI 312777 and therefore would require significant genetic improvements before it is suitable for commercial use in a reduced herbicide production system.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akey, W. C., Jurik, T. W., and Dekker, J. 1991. A replacement series evaluation of competition between velvetleaf (Abutilon theophrasti) and soybean (Glycine max). Weed Res 31:6372.CrossRefGoogle Scholar
Bollich, C. N., Webb, B. D., Marchetti, M. A., and Scott, J. E. 1985. Registration of ‘Lemont’ rice. Crop Sci 25:883885.CrossRefGoogle Scholar
Bussan, A. J., Burnside, O. C., Orf, J. H., Ristau, E. A., and Puettmann, K. J. 1997. Field evaluation of soybean (Glycine max) genotypes for weed competitiveness. Weed Sci 45:3137.CrossRefGoogle Scholar
Conolly, J. 1986. On difficulties with replacement-series methodology in mixture experiments. J. Appl. Ecol 23:125137.CrossRefGoogle Scholar
Cousens, R. D. and Mokhtari, S. 1998. Seasonal and site variability in the tolerance of wheat cultivars to interference from Lolium rigidum . Weed Res 38:301307.CrossRefGoogle Scholar
Cralle, H. T., Fojtasek, T. B., Carson, K. H., Chandler, J. M., Miller, T. D., Senseman, S. A., Bovey, R. W., and Stone, M. J. 2003. Wheat and Italian ryegrass (Lolium multiflorum) competition as affected by phosphorus nutrition. Weed Sci 51:425429.CrossRefGoogle Scholar
Crotser, M. P. and Witt, W. W. 2000. Effect of Glycine max canopy characteristics, G. max interference, and weed-free period on Solanum ptycanthum growth. Weed Sci 48:2026.CrossRefGoogle Scholar
Dilday, R. H., Lin, J., and Yan, W. 1994. Identification of allelopathy in the USDA-ARS rice germplasm collection. Australian J. Exp. Agric 34:907910.CrossRefGoogle Scholar
Dilday, R. H., Mattice, J. D., Moldenhauer, K. A., and Yan, W. G. 2001. Allelopathic potential in rice germplasm against ducksalad, red stem, and barnyardgrass. J. Crop Prod 4:287301.CrossRefGoogle Scholar
Dilday, R. H., Moldenhauer, K. A., Yan, W. G., and Gealy, D. R. 1998. Allelopathic activities to barnyardgrass in rice and yield reduction due to barnyardgrass infestation. Pages 2731 in Norman, R. J. and Johnston, T. H. eds. B. R. Wells Arkansas Rice Research Studies-1997. Research Series 460. Fayetteville, AR: University of Arkansas Agricultural Experiment Station.Google Scholar
Dilday, R. H., Nastasi, P., Lin, J., and Smith, R. J. Jr. 1991. Allelopathic activity in rice (Oryza sativa L.) against ducksalad [Heteranthera limosa (Sw.) Willd]. Pages 193201 in Hanson, J. D., Shaffer, M. J., Ball, D. A., and Cole, C. V. eds. Sustainable Agriculture for the Great Plains. Symposium Proceedings. Washington, DC: USDA, ARS, ARS-89.Google Scholar
Estorninos, L. E. Jr., Gealy, D. R., and Talbert, R. E. 2002. Growth response of rice (Oryza sativa) and red rice (O. sativa) in a replacement series study. Weed Technol 16:401406.CrossRefGoogle Scholar
Estorninos, L. E. Jr., Gealy, D. R., Talbert, R. E., and Gbur, E. E. 2005. Rice and red rice interference: I. Response of red rice (Oryza sativa) to sowing rates of tropical japonica and indica rice cultivars. Weed Sci. In press.CrossRefGoogle Scholar
Fischer, A. J., Messersmith, C. G., Nalewaja, J. D., and Duysen, M. E. 2000. Interference between spring cereals and Kochia scoparia related to environment and photosynthetic pathways. Agron. J 92:173181.Google Scholar
Garrity, D. P., Movillon, M., and Moody, K. 1992. Differential weed suppression ability in upland rice cultivars. Agron. J 84:586591.CrossRefGoogle Scholar
Gealy, D. R. 2001. Determination of root distribution of weed-suppressive rice (Oryza sativa) and barnyardgrass (Echinochloa crus-galli) in field soil using 13C isotope analysis. Pages 6974 in Norman, R. J. and Meullenet, J.-F. eds. B. R. Wells Arkansas Rice Research Studies-2000. Research Series 485. Fayetteville, AR: University Arkansas Agricultural Experiment Station.Google Scholar
Gealy, D. R., Dilday, R. H., and Rutger, J. N. 1998. Interaction of flush irrigation timing and suppression of barnyardgrass with potentially allelopathic rice lines. Pages 4955 in Norman, R. J. and Johnson, T. H. eds. B. R. Wells Arkansas Rice Research Studies-1997. Research Series 460. Fayetteville, AR: University Arkansas Agricultural Experiment Station.Google Scholar
Gealy, D. R. and Moldenhauer, K. A. 2005. Progress in developing weed suppressive rice cultivars for the southern U.S. Pages 1966 in Singh, H., Batish, D., and Kohli, R. eds. Handbook of Sustainable Weed Management. Binghamton, NY: Food Products Press. In press.Google Scholar
Gealy, D. R., Wailes, E. J., Estorninos, L. E. Jr., and Chavez, R. C. 2003. Rice cultivar differences in suppression of barnyardgrass (Echinochloa crus-galli) and economics of reduced propanil rates. Weed Sci 51:601609.CrossRefGoogle Scholar
Gibson, D. J., Conolly, J., Harnett, D. C., and Weidenhamer, J. D. 1999. Design for greenhouse studies of interactions between plants. J. Ecol 87:116.CrossRefGoogle Scholar
Gibson, K. D., Fischer, A. J., Foin, T. C., and Hill, J. E. 2002. Implications of delayed Echinochloa spp. germination and duration of competition for integrated weed management in water-seeded rice. Weed Res 42:351358.CrossRefGoogle Scholar
Gibson, K. D., Fischer, A. J., Foin, T. C., and Hill, J. E. 2003. Crop traits related to weed suppression in water-seeded rice (Oryza sativa). Weed Sci 51:8793.CrossRefGoogle Scholar
[GRIN] Germplasm Resources Information Network. 2004. Online Database, USDA, ARS, National Genetic Resources Program, National Germplasm Resources Laboratory, Beltsville, MD. www.ars-grin.gov.Google Scholar
Harper, J. L. 1977. Substitutive experiments. Pages 255267 in Population Biology of Plants. London: Academic.Google Scholar
Jolliffe, P. A., Minjas, A. N., and Runeckles, V. C. 1984. A reinterpretation of yield relationships in replacement series experiments. J. Appl. Ecol 21:227243.CrossRefGoogle Scholar
Lopez-Martinez, N., Salva, A. P., Finch, R. P., Marshall, G., and De Prado, R. 1999. Molecular markers indicate intraspecific variation in the control of Echinochloa spp. with quinclorac. Weed Sci 47:310315.CrossRefGoogle Scholar
Lovelace, M. L., Talbert, R. E., Dilday, R. H., Scherder, E. F., and Buehring, N. W. 2001. Use of allelopathic rice with reduced herbicide rates for control of barnyardgrass (Echinochloa crus-galli). Pages 7588 in Norman, R. J. and Meullenet, J.-F. eds., B. R. Wells Arkansas Rice Research Studies-2000. Research Series 485. Fayetteville, AR: University of Arkansas Agricultural Experiment Station.Google Scholar
Ludlow, M. M., Troughton, J. H., and Jones, R. J. 1976. A technique for determining the proportion of C3 and C4 species in plant samples using stable natural isotopes of carbon. J. Agric. Sci 87:625632.CrossRefGoogle Scholar
Mattice, J. D., Dilday, R. H., Gbur, E. E., and Skulman, B. W. 2001. Barnyardgrass growth inhibition with rice using high-performance liquid chromatography to identify rice accession activity. Agron. J 93:811.CrossRefGoogle Scholar
Ni, H., Moody, K., Robles, R. P., Paller, E. C. Jr., and Lales, J. S. 2000. Oryza sativa plant traits conferring competitive ability against weeds. Weed Sci 48:200204.CrossRefGoogle Scholar
Oberg, A. L., Young, L. J., and Higley, L. G. 1996. A comparison of two measures of competition. J. Agric. Biol. Environ. Stat 1:393403.CrossRefGoogle Scholar
Ogg, A. G. Jr., Stephens, R. H., and Gealy, D. R. 1993. Growth analysis of mayweed chamomile (Anthemis cotula) interference in peas (Pisum sativum). Weed Sci 41:394402.CrossRefGoogle Scholar
O'Leary, M. 1981. Carbon isotope fractionation in plants. Phytochemistry 20:553567.CrossRefGoogle Scholar
Olofsdotter, M., Navarez, D., and Moody, K. 1995. Allelopathic potential in rice (Oryza sativa L.) germplasm. Ann. Appl. Biol 127:543560.CrossRefGoogle Scholar
Radosevich, S. R. 1987. Methods of interactions among crops and weeds. Weed Technol 1:190198.CrossRefGoogle Scholar
Svejcar, T. J. and Boutton, T. W. 1985. The use of stable carbon isotope analysis in rooting studies. Oecologia 67:205208.CrossRefGoogle ScholarPubMed
Trimble, S. T. and Sagers, C. L. 2004. Differential host use in two highly specialized ant-plant associations: evidence from stable isotopes. Oecologia 138:7482.CrossRefGoogle ScholarPubMed
VanDevender, K. W., Costello, T. A., and Smith, R. J. Jr. 1997. Model of rice (Oryza sativa) yield reduction as a function of weed interference. Weed Sci 45:218224.CrossRefGoogle Scholar
Ziegler, S. E. and Brisco, S. L. 2004. Relationships between the isotopic composition of dissolved organic carbon and its bioavailability in contrasting Ozark streams. Hydrobiologia 513:153169.CrossRefGoogle Scholar