Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T19:08:54.707Z Has data issue: false hasContentIssue false

Interference and Control of Glyphosate-Resistant and -Susceptible Palmer Amaranth (Amaranthus palmeri) Populations under Greenhouse Conditions

Published online by Cambridge University Press:  20 January 2017

Aman Chandi
Affiliation:
Department of Crop Science, North Carolina State University, Campus Box 7620, Raleigh, NC 27695
David L. Jordan*
Affiliation:
Department of Crop Science, North Carolina State University, Campus Box 7620, Raleigh, NC 27695
Alan C. York
Affiliation:
Department of Crop Science, North Carolina State University, Campus Box 7620, Raleigh, NC 27695
Susana R. Milla-Lewis
Affiliation:
Department of Crop Science, North Carolina State University, Campus Box 7620, Raleigh, NC 27695
James D. Burton
Affiliation:
Department of Horticulture Science, North Carolina State University, Campus Box 7609, Raleigh, NC 27695
A. Stanley Culpepper
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, P.O. Box 478, Tifton, GA 31794
Jared R. Whitaker
Affiliation:
Department of Crop Science, North Carolina State University, Campus Box 7620, Raleigh, NC 27695
*
Corresponding author's E-mail: [email protected]

Abstract

Interference for 40 d after emergence (DAE) of corn, cotton, peanut, and snap bean by four glyphosate-resistant (GR) and four glyphosate-susceptible (GS) Palmer amaranth populations from Georgia and North Carolina was compared in the greenhouse. Greater interference from Palmer amaranth, measured as crop height and fresh weight reduction, was noted in cotton and peanut compared with corn or snap bean. Crop height 15 to 40 DAE was reduced similarly by GR and GS populations. Crop fresh weight, however, was reduced 25 and 19% in the presence of GS and GR populations, respectively. Measured as percent reduction in fresh weight, GR and GS populations of Palmer amaranth were controlled similarly by glufosinate, lactofen, paraquat, and trifloxysulfuron applied POST. Atrazine and dicamba controlled GR populations more effectively than GS populations.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Department of Crop and Soil Sciences, University of Georgia, P.O. Box 8112, Statesboro, GA 30460.

References

Literature Cited

Ahrens, W. H. and Stoller, E. W. 1983. Competition, growth rate, and CO2 fixation in triazine- susceptible and -resistant smooth pigweed (Amaranthus hybridus). Weed Sci. 31: 438444.Google Scholar
Baucom, R. S. and Mauricio, R. 2004. Fitness costs and benefits of novel herbicide tolerance in a noxious weed. Proc. Natl. Acad. Sci. U. S. A. 101: 1338613390.Google Scholar
Bensch, C. N., Horak, M. J., and Peterson, D. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci. 51: 3743.Google Scholar
Black, C. C., Chen, T. M., and Brown, R. H. 1969. Biochemical basis for plant competition. Weed Sci. 17: 338344.Google Scholar
Bond, J. A., Oliver, L. R., and Stephenson, D. O. IV. 2006. Response of Palmer amaranth (Amaranthus palmeri) accessions to glyphosate, fomesafen, and pyrithiobac. Weed Technol. 20: 885892.Google Scholar
Branson, J. W., Smith, K. L., and Barrentine, J. L. 2005. Comparison of trifloxysulfuron and pyrithiobac in glyphosate-resistant and bromoxynil-resistant cotton. Weed Technol. 19: 404410.Google Scholar
Burke, I. C., Schroeder, M., Thomas, W. E., and Wilcut, J. W. 2007. Palmer amaranth interference and seed production in peanut. Weed Technol. 21: 367371.Google Scholar
Chandi, A., Milla-Lewis, S. R., Jordan, D. L., York, A. C., Burton, J. D., Zuleta, M. C., Whitaker, J. R., and Culpepper, A. S. 2013. Use of AFLP markers to assess genetic diversity in Palmer amaranth (Amaranthus palmeri) populations from North Carolina and Georgia. Weed Sci. 61: 136145.Google Scholar
Conrad, S. G. and Radosevich, S. R. 1979. Ecological fitness of Senecio vulgaris and Amaranthus retroflexus biotypes susceptible or resistant to atrazine. J. Appl. Ecol. 16: 171177.Google Scholar
Culpepper, A. S., MacRae, A. W., York, A. C., and Whitaker, J. R. 2008a. Managing glyphosate-resistant Palmer amaranth in conventional and strip-till Roundup Ready cotton. Proc. South. Weed Sci. Soc. 61: 62.Google Scholar
Culpepper, A. S., Whitaker, J. R., MacRae, A. W., and York, A. C. 2008b. Distribution of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006. J. Cotton Sci. 12: 306310.Google Scholar
Culpepper, A. S., York, A. C., and Kichler, J. 2008c. University of Georgia Herbicide Programs for Controlling Glyphosate-Resistant Palmer Amaranth in 2008 Cotton Tifton, GA: Georgia Coop. Ext. Serv. Circular 924. http://www.gaweed.com/HomepageFiles/Palmer2008.pdf. Accessed: April 9, 2012.Google Scholar
Ehleringer, J. 1983. Ecophysiology of Amaranthus palmeri, a Sonoran Desert summer annual. Oecologia. 57: 107112.Google Scholar
Gossett, B. J., Murdock, E. C., and Toler, J. E. 1992. Resistance of Palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technol. 6: 587591.Google Scholar
Heap, I. 2012. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: March 24, 2012.Google Scholar
Holt, J. S. 1996. Ecological fitness of herbicide-resistant weeds. Pages 387392 in Proceedings of the Second International Weed Control Congress, Copenhagen, Denmark: Department of Weed Control and Pesticide Ecology.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 48: 347355.Google Scholar
Jasieniuk, M. A., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44: 176193.Google Scholar
Jordan, N. 1996. Effects of triazine-resistance mutation in fitness in Amaranthus hybridus (smooth pigweed). J. Appl. Ecol. 33: 141150.Google Scholar
Jordan, N. 1999. Fitness effects of the triazine resistance mutation in Amaranthus hybridus: relative fitness in maize and soybean crops. Weed Res. 39: 493505.Google Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci. 42: 523527.Google Scholar
Li, J., Smeda, R. J., and Wait, J. D. 2004. Population difference in waterhemp treated with glyphosate and lactofen. Weed Sci. Soc. Am. Abstr. 44: 53.Google Scholar
Massinga, R. A. and Curie, R. S. 2002. Impact of Palmer amaranth (Amaranthus palmeri) on corn (Zea mays) grain yield and quality of forage. Weed Technol. 16: 532536.Google Scholar
Massinga, R. A., Curie, R. S., Horak, M. J., and Boyer, J. Jr. 2001. Interference of Palmer amaranth in corn. Weed Sci. 49: 202208.Google Scholar
Menchari, Y., Chauvel, B., Darmency, H., and Delye, C. 2008. Fitness costs associated with three mutant acetyl-coenzyme A carboxylase alleles endowing herbicide resistance in black-grass (Alopecurus myosuroides). J. Appl. Ecol. 45: 939947.Google Scholar
Moore, J. W., Murray, D. S., and Westerman, R. B. 2004. Palmer amaranth (Amaranthus palmeri) effects on the harvest and yield of grain sorghum (Sorghum bicolor). Weed Technol. 18: 2329.Google Scholar
Morgan, G. D., Baumann, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 15: 408412.Google Scholar
Mozingo, R. W., Coffelt, T. A., and Isleib, T. G. 2000. Registration of ‘VA 98R’ peanut. Crop Sci. 40: 12011203.Google Scholar
Noldin, J. A., Chandler, J. M., Ketchersid, M. L., and McCauley, G. N. 1999. Red rice (Oryza sativa) biology. II. Ecotype sensitivity to herbicides. Weed Technol. 13: 1924.Google Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22: 108113.Google Scholar
Norsworthy, J. K., Riar, D., Jha, P., and Scott, R. C. 2011. Confirmation, control, and physiology of glyphosate resistant giant ragweed (Ambrosia trifida) in Arkansas. Weed Technol. 25: 430435.Google Scholar
Padzoldt, W. L., Tranel, P. J., and Hager, A. G. 2002. Variable herbicide response among Illinois waterhemp (Amaranthus rudis and A. tuberculatus) populations. Crop Prot. 21: 707712.Google Scholar
Pederson, M. B., Neve, P., Andreasen, C., and Powles, S. B. 2007. Ecological fitness of a glyphosate-resistant Lolium rigidum population: growth and seed production along competition gradient. Basic Appl. Ecol. 8: 258268.Google Scholar
Place, G., Bowman, D., Burton, M., and Rufty, T. 2008. Root penetration through a high bulk density soil layer: differential response of a crop and weed species. Plant Soil 307: 179190.Google Scholar
Porterfield, D., Wilcut, J. W., Wells, J. W., and Clewis, S. B. 2003. Weed management with CGA-362622 in transgenic and nontransgenic cotton. Weed Sci. 51: 10021009.Google Scholar
Preston, C. and Wakelin, A. M. 2008. Resistance to glyphosate from altered herbicide translocation patterns. Pest Manag. Sci. 64: 372376.Google Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47: 305309.Google Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., Kendig, J. A., and Ellersieck, M. R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 51: 329333.Google Scholar
Sweat, J. K., Horak, M. J., Peterson, D. E., Lloyd, R. W., and Boyer, J. E. 1998. Herbicide efficacy of four Amaranthus species in soybean (Glycine max). Weed Technol. 12: 315321.Google Scholar
Tardif, F. J. and Leroux, G. D. 1991. Response of quackgrass biotypes to glyphosate and quazalofop. Can. J. Plant Sci. 71: 803810.Google Scholar
Tardif, F. J. and Powels, S. B. 2006. A mutation in the herbicide target site acetohydoxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii . New Phytol. 169: 25264.Google Scholar
van Heemst, H.D.J. 1985. The influence of weed competition on crop yield. Agric. Systems 18: 8193.Google Scholar
Wakelin, A. M. and Preston, C. 2006. The cost of glyphosate resistance: is there a fitness penalty associated with glyphosate resistance in annual ryegrass? Pages 515518 in Proc. of the 15th Australian Weeds Conference. Adelaide, Australia, Weed Management Society of South Australia, Incorporated.Google Scholar
Warwick, S. I. 1991. Herbicide resistance in weedy plants: physiology and population biology. Ann. Rev. Ecol. Syst. 22: 95114.Google Scholar
Webster, T. M. 2004. Weed survey—southern states. Proc. South. Weed Sci. Soc. 57: 404426.Google Scholar
Webster, T. M. 2005. Weed survey—southern states. Proc. South. Weed Sci. Soc. 58: 291–06.Google Scholar
Webster, T. M. and Coble, H. D. 1997. Changes in the weed species composition of the southern United States: 1974–1995. Weed Technol. 11: 308317.Google Scholar
Whitaker, J. R. 2009. Distribution, Biology, and Management of Glyphosate-Resistant Palmer Amaranth. Ph.D dissertation. Raleigh, NC: North Carolina State University. 231 p.Google Scholar
Wise, A. M., Grey, T. L., Prostko, E. P., Vencill, W. K., and Webster, T. M. 2009. Establishing the geographical distribution and level of acetolactate synthase resistance in Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol. 23: 214–200.Google Scholar
Wright, S. R., Jennette, M. W., Coble, H. D., and Rufty, T. W. 1999. Root morphology of young Glycine max, Senna obtusifolia, and Amaranthus palmeri . Weed Sci. 47: 706711.Google Scholar