Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T19:30:44.408Z Has data issue: false hasContentIssue false

Interacting effects of MON 12000 and CGA-152005 with other herbicides in velvetleaf (Abutilon theophrasti)

Published online by Cambridge University Press:  12 June 2017

Stephen E. Hart*
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801

Abstract

Greenhouse and laboratory studies were conducted to determine the effects of dicamba, atrazine, and bentazon on efficacy, foliar absorption, and translocation of MON 12000 or CGA-152005 applied to velvetleaf. The efficacy of MON 12000, CGA-152005, and a combination of CGA-152005 plus primisulfuron applied at 4.5 g ai ha−1 was similar when applied alone or with 140 g ha−1 of dicamba. However, applying these herbicides in combination with 840 or 560 g ha−1 of atrazine or bentazon, respectively, reduced velvetleaf control. Increasing the rate of MON 12000, CGA-152005, or the combination of CGA-152005 plus primisulfuron to 9 g ai ha−1 or replacing crop oil concentrate (COC) with methylated seed oil (MSO) increased velvetleaf control of the atrazine and bentazon combinations but not to levels equal to these herbicides applied alone. Dicamba had no effect on the foliar absorption and translocation of 14C from MON 12000 or CGA-152005. Atrazine had little effect on foliar absorption of 14C from MON 12000 or CGA-152005, but bentazon reduced the foliar absorption of 14C from MON 12000. Replacing COC with MSO increased the foliar absorption of 14C from MON 12000 or CGA-152005 applied alone or with dicamba or atrazine, but not with bentazon. Translocation of 14C from MON 12000 or CGA-152005 out of the treated leaves was 11 and 12%, respectively, averaged across adjuvants and sampling times. These values were reduced to an average of 3 to 4% for both MON 12000 and CGA-152005 when applied in combination with atrazine or bentazon. The majority of 14C from MON 12000 or CGA-152005 was translocated acropetally. Atrazine and bentazon significantly reduced the acropetal translocation of 14C from MON 12000 at 24 and 72 h and for CGA-152005 at 12, 24, and 72 h. The physiological basis for the observed antagonism of MON 12000 and CGA-152005 by atrazine and bentazon appears to be due to reductions in acropetal translocation of MON 12000 and CGA-152005 to velvetleaf meristems.

Type
Weed Management
Copyright
Copyright © 1997 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bader, B. M., DeFelice, M. S., Dilbeck, J. S., and Holman, C. S. 1994. Herbicide resistant weed populations discovered in Missouri. Proc. N. Cent. Weed Sci. Soc. 49: 89.Google Scholar
Barrentine, W. L., Soigner, S. S., and Kilen, T. C. 1995. Characteristics of a common cocklebur (Xanthium strumarium L.) biotype resistant to the imidazolinone herbicides. Abstr. Weed Sci. Soc. Am. 35: 45.Google Scholar
Bauer, T. A., Renner, K. A., and Penner, D. 1995. &Olathe& pinto bean (Phaseolus vulgaris) response to postemergence imazethapyr and bentazon. Weed Sci. 43: 276282.Google Scholar
Bradshaw, L. D. and Ricotta, J. A. 1993. MON 12000: a new herbicide for postemergence broadleaf weed control in corn. Abstr. Weed Sci. Soc. Am. 33: 8.Google Scholar
Camacho, R. F. and Moshier, L. J. 1991. Absorption, translocation and activity of CGA-136872, DPX-V9360, and glyphosate in rhizome johnsongrass (Sorghum halepense). Weed Sci. 39: 354357.Google Scholar
Cantwell, J. R., Liebl, R. A., and Slife, F. W. 1989. Imazethapyr for weed control in soybean (Glycine Max). Weed Technol. 7: 345351.Google Scholar
Claus, J. and Behrens, R. 1976. Glyphosate translocation and quackgrass rhizome bud kill. Weed Sci. 24: 149152.Google Scholar
Devine, M. D., Bandeen, J. D., and Kersie, B. D. 1983. Fate of glyphosate in Agropyron repens (L.) Beauv. growing under low temperature conditions. Weed Res. 23: 6975.Google Scholar
Devine, M. D., Bestman, H. D., and Vanden Born, W. H. 1990. Physiological basis for different phloem mobilities of chlorsulfuron and clopyralid. Weed Sci. 38: 19.Google Scholar
Devine, M. D. and Vanden Born, W. H. 1985. Absorption, translocation, and foliar activity of clopyralid and chlorsulfuron in Canada thistle (Cirsium arvense) and perennial sowthistle (Sonchus arvensis). Weed Sci. 33: 524530.Google Scholar
Field, R. J. and Thai, P. H. 1980. The preferential accumulation of picloram at sites of active growth in gorse (Ulex europaeus L.). Weed Res. 20: 177182.Google Scholar
Fuerst, E. P. and Norman, M. A. 1991. Interactions of herbicides with photosynthetic electron transport. Weed Sci. 39: 458464.Google Scholar
Gerwick, B. C. 1988. Potential mechanisms for bentazon antagonism with haloxyfop. Weed Sci. 36: 286290.Google Scholar
Hart, S. E., Hager, A. G., Knake, E. L., and Maxwell, D. J. 1994. Postemergence ALS herbicide tank-mix combinations for broadleaf control in corn. Urbana, Illinois. Research Report. N. Cent. Weed Sci. Soc. 51: 136137.Google Scholar
Hart, S. E., Kells, J. J., and Penner, D. 1992. Influence of adjuvants on the efficacy, absorption, and spray retention of primisulfuron. Weed Technol. 6: 592598.Google Scholar
Hart, S. E. and Maxwell, D. J. 1995. Postemergence broadleaf weed control in corn. Dekalb, Illinois. Research Report. N. Cent. Weed Sci. Soc. 52: 128129.Google Scholar
Hart, S. E. and Penner, D. 1993. Atrazine reduces primisulfuron transport to meristems of giant foxtail (Setaria faberi) and velvetleaf (Abutilon theophrasti). Weed Sci. 41: 2833.Google Scholar
Hart, S. E. and Wax, L. M. 1996. Dicamba antagonizes grass weed control with imazethapyr by reducing foliar absorption. Weed Technol. 10: 828834.Google Scholar
Hinz, J. R. and Owen, M.D.K. 1995. Mechanism of ALS resistance in a common waterhemp (Amaranthus rudis) population. Proc. N. Cent. Weed Sci. Soc. Proc. 50: 91.Google Scholar
Holshouser, D. L. and Coble, H. D. 1990. Compatibility of sethoxydim with five postemergence broadleaf herbicides. Weed Technol. 4: 128133.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9: 192195.CrossRefGoogle Scholar
Jordan, D. L. and York, A. C. 1989. Effect of ammonium fertilizers and BCH 81508 S on antagonism with sethoxydim plus bentazon mixtures. Weed Technol. 3: 450454.Google Scholar
Jordan, D. L., York, A. C., and Corbin, F. T. 1989. Effect of ammonium sulfate and bentazon on sethoxydim absorption. Weed Technol. 3: 671677.Google Scholar
Kupatt, C., Gillespie, C., Peek, J. W., Gerber, H. R., Meyer, W., Oertle, K., and Schulte, M. 1993. Broadleaf weed control with CGA-152005, a new herbicide for corn. Weed Sci. Soc. Am. Abstr. 33: 7.Google Scholar
Leys, A. R. and Slife, F. W. 1988. Absorption and translocation of 14C-chlorsulfuron and 14C-metsulfuron in wild garlic (Allium vineale). Weed Sci. 36: 14.Google Scholar
Lueschen, W. E. and Getting, J. K. 1995. Broadleaf weed control in corn with soil applied and postemergence herbicides at Lamberton, MN in 1995. Research Report. N. Cent. Weed Sci. Soc. 52: 220.Google Scholar
Manely, B. S., Wilson, H. P., and Hines, T. E. 1995. An altered acetolactate synthase is the basis for imidazolinone resistance in smooth pigweed (Amaranthus hybridus L.). Weed Sci. Soc. Am. Abstr. 35: 64.Google Scholar
Mine, A. and Matsunaka, S. 1975. “Mode of action of bentazon: effect on photosynthesis.” Pestic. Biochem. Physiol. 5: 444450.Google Scholar
Obermeier, M. R. and Kapusta, G. 1994. Corn weed control with CGA-152005 plus companion postemergence broadleaf herbicides. Research Report. N. Central Weed Science ociety. 51: 70.Google Scholar
Obrigawitch, T. T., Kenyon, W. H., and Kuratle, H. 1990. Effect of application timing on rhizome johnsongrass (Sorghum halepense) control with DPX-V9360. Weed Sci. 38: 4549.Google Scholar
Owen, M.D.K., Lux, J. F., and Pecinovsky, K. T. 1994a. Evaluation of CGA-152005 combinations applied postemergence for weed management in corn. Ames, Iowa. Research Report. N. Central Weed Science Society. 51: 157 Google Scholar
Owen, M.D.K., Lux, J. F., and Pecinovsky, K. T. 1994b. Evaluation of pyridate, CGA-152005, MON 12000, and metribuzin for weed managment in corn. Nashua, Iowa. Research Report. N. Central Weed Science Society. 51: 148.Google Scholar
Raven, P. H., Evert, R. F., and Eichhorn, S. E. 1986. The shoot primary structure and evelopment. in Raven, P. H., Evert, R. F., and Eichhorn, S. E., eds. Biology of Plants. 4th ed. New York: Worth Publishers, pp. 413435.Google Scholar
Ray, T. B. 1984. Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75: 827831.Google Scholar
Rhodes, G. N. and Coble, H. D. 1984. Influence of bentazon on absorption and translocation of sethoxydim in goosegrass (Eleusine indica L.). Weed Sci. 32: 595597.CrossRefGoogle Scholar
Sprague, C. L., Wax, L. M., and Stoller, E. W. 1995. Characteristics of ALS-resistant Amaranthus spp. N. Cent. Weed Sci. Soc. Proc. 50: 92.Google Scholar
Wanamarta, G., Penner, D., and Kells, J. J. 1989. The basis of bentazon antagonism on sethoxydim absorption and activity. Weed Sci. 37: 400404.Google Scholar
Wesley, T. M. and Shaw, D. R. 1992. Interactions of diphenylether herbicides with chlorimuron and imazaquin. Weed Technol. 6: 345351.Google Scholar