Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T05:52:22.616Z Has data issue: false hasContentIssue false

Horseweed (Conyza canadensis) seed collected in the planetary boundary layer

Published online by Cambridge University Press:  20 January 2017

Joseph T. Dauer
Affiliation:
Department of Crop and Soil Sciences, Pennsylvania State University, University Park, PA 16802
Mark J. VanGessel
Affiliation:
Department of Plant and Soil Sciences, University of Delaware Research and Education Center, RD 6, Box 48, Georgetown, DE 19947
Gabor Neumann
Affiliation:
Department of Entomology, Cornell University, Ithaca, NY 14853

Abstract

Horseweed is a winter or summer annual plant, native to North America and distributed worldwide in temperate climates. This plant is considered an important agricultural weed because it can reduce agricultural yields by 90% at high densities and becomes problematic under low-tillage agriculture. Seed production is robust with an estimated 200,000 seeds produced per plant, and seed dispersal is wind-assisted. The confirmation of glyphosate-resistant horseweed in Delaware in 2001 and the rapid spread of the resistant biotype, currently covering more than 44,000 ha, has necessitated a change in the discussion about weed dispersal. Large radio-controlled airplanes were used to sample the lower atmosphere for the presence of horseweed seeds during a 3-d period in early September 2005 in southern Delaware. The collection of multiple seeds at heights ranging from 41 to 140 m above ground level strongly suggests that horseweed seeds are entering the Planetary Boundary Layer (PBL) of the atmosphere, where long-ranged transport of aerial biota frequently occurs. With wind speeds in the PBL frequently exceeding 20 m s−1, seed dispersal can easily exceed 500 km in a single dispersal event.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andersen, M. C. 1993. Diaspore morphology and seed dispersal in several wind-dispersed Asteraceae. Am. J. Bot. 80:487492.Google Scholar
Aylor, D. E., Boehm, M. T., and Shields, E. J. 2006. Quantifying aerial concentrations of maize pollen in the atmospheric surface layer using remote-piloted airplanes and Lagrangian stochastic simulation modeling. J. Appl. Meteorol. Climatol. 45:10031015.CrossRefGoogle Scholar
Aylor, D. E., Schultes, N. P., and Shields, E. J. 2003. An aerobiological framework for assessing cross-pollination in maize. Agric. For. Meteorol. 119:111129.CrossRefGoogle Scholar
Aylor, D. E., Taylor, G. S., and Raynor, G. S. 1982. Long-ranged transport of tobacco blue mold spores. J. Agric. Meteorol. 27:217232.Google Scholar
Bhowmik, P. C. and Bekech, M. M. 1993. Horseweed (Conyza canadensis) seed production, emergence, and distribution in no-tillage and conventional tillage corn (Zea mays). Agron. Trends Agric. Sci. 1:6771.Google Scholar
Bruce, J. A. and Kells, J. J. 1990. Horseweed (Conyza canadensis) control in no-tillage soybeans (Glycine max) with preplant and preemergence herbicides. Weed Technol. 4:642647.Google Scholar
Dauer, J. T., Mortensen, D. A., and Humston, R. 2006a. Controlled experiments to predict horseweed (Conyza canadensis) dispersal distances. Weed Sci. 54:484489.Google Scholar
Dauer, J. T., Mortensen, D. A., Isard, S., Shields, E., and VanGessel, M. J. 2006b. Measuring seed movement at multiple atmospheric levels. Weed Sci. Soc. Am. Abstr. 46:243.Google Scholar
Dauer, J. T., Mortensen, D. A., and VanGessel, M. J. 2006c. Temporal and spatial dynamics of long-distance Conyza canadensis seed dispersal. J. Appl. Ecol. In press.Google Scholar
Garratt, J. R. 1992. The Atmospheric Boundary Layer. Cambridge, Great Britain: Cambridge University.Google Scholar
Gressel, J., Ammon, H. U., Fogelfors, H., Gasquez, J., Kay, Q. O. N., and Kees, H. 1982. Herbicide Resistance in Plants, eds. H. M. LeBaron and J. Gressel. New York: J. Wiley. 401 p.Google Scholar
Heap, I. 2005. International Survey of Herbicide Resistant Weeds. www.weedscience.org.Google Scholar
Holm, L., Doll, J., Holm, E., Pancho, J., and Herberger, J. 1997. Conyza canadensis (L.) Cronq. (syn. Erigeron canadensis L). Pages 226235 in World Weeds: Natural Histories and Distributions. Toronto: J. Wiley.Google Scholar
Huschke, R. E. 1989. Glossary of Meteorology. 5th ed. Boston: American Meteorological Society. 638 p.Google Scholar
Isard, S. A. and Gage, S. H. 2001. Flow of Life in the Atmosphere: An Airscape Approach to Understanding Invasive Organisms. East Lansing, MI: Michigan State University. 240 p.Google Scholar
Isard, S. A., Gage, S. H., Comtois, P., and Russo, J. M. 2005. Principles of the atmospheric pathway for invasive species applied to soybean rust. Bioscience. 55:851861.CrossRefGoogle Scholar
Lowry, W. P. and Lowry, P. P. 1989. Fundamentals of Biometeorology: Interactions of Organisms and the Atmosphere—The Physical Environment. Volume I. McMinnville, OR: Peavine.Google Scholar
Maldonado-Ramirez, S. L., Schmale, D. G., Shields, E. J., and Bergstrom, G. C. 2005. The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agric. For. Meteorol. 132:2027.Google Scholar
Mortensen, D. A. 2005. The role of herbicide resistance in structuring weed communities. Proc. South. Weed Sci. Soc. 58:193.Google Scholar
Nathan, R., Katul, G. G., Horn, H. S., Thomas, S. M., Oren, R., Avissar, R., Pacala, S. W., and Levin, S. A. 2002. Mechanism of long-distance dispersal of seeds by wind. Nature. 408:409413.Google Scholar
Pölös, E., Laskay, G., Szigeti, Z., Pataki, Sz, and Lehoczki, E. 1987. Photosynthetic properties and cross-resistance to some urea herbicides of triazine-resistant Conyza canadensis (L.) Cronq. Z. Naturforsch. 42c:783793.CrossRefGoogle Scholar
Shields, E. J. and Testa, A. 1999. Fall migratory flight initiation of the potato leafhopper, Empoasca fabae Harris (Homoptera: Cicadellidae): observations in the lower atmosphere using remote piloted vehicles. Agric. For. Meteorol. 97:317330.Google Scholar
Smisek, A., Doucet, C., Jones, M., and Weaver, S. E. 1998. Paraquat resistance in horseweed (Conyza canadensis) and Virginia pepperweed (Lepidium virginicum) from Essex County, Ontario. Weed Sci. 46:200204.Google Scholar
Thomas, C. F. G., Brain, P., and Jepson, P. C. 2003. Aerial activity of linyphiid spiders: modelling dispersal distances from meteorology and behaviour. J. Appl. Ecol. 40:912927.CrossRefGoogle Scholar
[USDA–NASS] U.S. Department of Agriculture—National Agricultural Statistics Service. 2005. Acreage. www.nass.usda.gov.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:703705.Google Scholar
Weaver, S. E. 2001. The biology of Canadian weeds, 115: Conyza canadensis . Can. J. Plant Sci. 81:867875.Google Scholar
Zelaya, I. A., Owen, M. D. K., and VanGessel, M. J. 2004. Inheritance of evolved glyphosate resistance in Conyza canadensis (L.) Cronq. Theor. Appl. Genet. 110:5870.CrossRefGoogle ScholarPubMed