Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-21T15:32:37.677Z Has data issue: false hasContentIssue false

Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia

Published online by Cambridge University Press:  20 January 2017

Timothy L. Grey
Affiliation:
Crop and Soil Science Department, The University of Georgia, P.O. Box 748, Tifton, GA 31794
William K. Vencill
Affiliation:
Crop and Soil Science Department, The University of Georgia, 4105 Plant Science, Athens, GA 30602
Jeremy M. Kichler
Affiliation:
Macon County Extension Service, The University of Georgia, P.O. Box 486, Oglethorpe, GA 31068
Theodore M. Webster
Affiliation:
USDA-ARS, Crop Protection and Management Research Unit, Coastal Plain Experiment Station, Tifton, GA 31794
Steve M. Brown
Affiliation:
Crop and Soil Science Department, The University of Georgia, P.O. Box 1209, Tifton, GA 31793
Alan C. York
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695
Jerry W. Davis
Affiliation:
Experimental Statistics, The University of Georgia, 1109 Experiment Street, Griffin, GA 30223
Wayne W. Hanna
Affiliation:
Crop and Soil Science Department, The University of Georgia, P.O. Box 748, Tifton, GA 31794

Abstract

A glyphosate-resistant Palmer amaranth biotype was confirmed in central Georgia. In the field, glyphosate applied to 5- to 13-cm-tall Palmer amaranth at three times the normal use rate of 0.84 kg ae ha−1 controlled this biotype only 17%. The biotype was controlled 82% by glyphosate at 12 times the normal use rate. In the greenhouse, I 50 values (rate necessary for 50% inhibition) for visual control and shoot fresh weight, expressed as percentage of the nontreated, were 8 and 6.2 times greater, respectively, with the resistant biotype compared with a known glyphosate-susceptible biotype. Glyphosate absorption and translocation and the number of chromosomes did not differ between biotypes. Shikimate was detected in leaf tissue of the susceptible biotype treated with glyphosate but not in the resistant biotype.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amrhein, N., Deus, B., Gehrke, P., and Steinrucken, H. C. 1980. The site of inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro . Plant Physiol 66:830834.CrossRefGoogle ScholarPubMed
Anonymous. 2005. Roundup WEATHERMAXTM herbicide specimen label. www.cdms.net/ldat/ld5UJ024.pdf.Google Scholar
Barnes, J. W. and Oliver, L. R. 2004. Cloransulam absorption, translocation, and efficacy on common broadleaf weed species. Weed Sci 52:634641.Google Scholar
Bernards, M. L., Thelen, K. D., Penner, D., Muthukumaran, R. B., and McCracken, J. L. 2005. Glyphosate interaction with manganese in tank mixtures and its effect on glyphosate absorption and translocation. Weed Sci 53:787794.Google Scholar
Bradshaw, L. D., Padgette, S. R., Kimball, S. L., and Wells, B. H. 1997. Perspectives on glyphosate resistance. Weed Technol 11:189198.Google Scholar
Bunnell, B. T., Baker, R. D., McCarty, L. B., Hall, D. W., and Colvin, D. L. 2003. Differential responses of five bahiagrass (Paspalum notatum) cultivars to metsulfuron. Weed Technol 17:550553.Google Scholar
Culpepper, A. S. and York, A. C. 1998. Weed management in glyphosate-tolerant cotton. J. Cotton Sci 2:174185.Google Scholar
Elmore, C. D. 1990. Weed Identification Guide. Champaign, IL: Southern Weed Science Society.Google Scholar
Everitt, J. D., Keeling, J. W., Lyon, L. L., and Dotray, P. A. 2003. Palmer amaranth (Amaranthus palmeri) and devil's-claw (Proboscidea louisianica) control with Staple/glyphosate combinations in Roundup Ready cotton. Page 2262 in Proceedings of the Beltwide Cotton Conference. Memphis, TN: National Cotton Council of America.Google Scholar
Feng, P. C. C., Tran, M., Chiu, T., Sammons, R. D., Heck, G. R., and CaJacob, C. A. 2004. Investigation into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Sci 52:498505.Google Scholar
Ferguson, G. M., Hamill, A. S., and Tardif, F. J. 2001. ALS inhibitor resistance in populations of Powell amaranth and redroot pigweed. Weed Sci 49:448453.Google Scholar
Frans, R. E., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, N. D. ed. Research Methods in Weed Science. Champaign, IL: Southern Weed Science Society.Google Scholar
Franssen, A. S., Skinner, D. Z., Al-Khatib, K., Horak, M. J., and Kulakow, P. A. 2001. Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Sci 49:598606.Google Scholar
Gad, S. C. and Weil, C. S. 1989. Statistics for toxicologists. Pages 435484 in Hayes, A. W. ed. Principles and Methods of Toxicology. New York: Raven.Google Scholar
Gaitonde, M. and Gordon, M. 1958. A microchemical method for detecting and determination of shikimic acid. J. Biol. Chem 230:10431050.Google Scholar
Grichar, W. J., Besler, B. A., Brewer, K. D., and Minton, B. W. 2004. Using soil-applied herbicides in combination with glyphosate in a glyphosate-resistant cotton herbicide program. Crop Protect 23/10:10071010.CrossRefGoogle Scholar
Heap, I. M. 2005. International Survey of Herbicide Resistant Weeds. www.weedresearch.org.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci 48:347355.Google Scholar
[HRAC] Herbicide Resistant Action Committee. 2005. Guideline to the Management of Herbicide Resistance. www.plantprotection.org/hrac/guideline.html.Google Scholar
Jeschke, M. R., Tranel, P. J., and Rayburn, A. L. 2003. DNA content analysis of smooth pigweed (Amaranthus hybridus) and tall waterhemp (A. tuberculatus): implications of hybrid detection. Weed Sci 51:13.CrossRefGoogle Scholar
Jha, P. and Norsworthy, J. K. 2005. Effect of soybean canopy formation and tillage on temporal emergence of Palmer amaranth. Proc. South. Weed Sci. Soc 58:214.Google Scholar
Jost, P. J., Brown, S. M., Culpepper, S., Harris, G., Kemerait, B., Roberts, P., Shurley, D., and Williams, J. 2005. 2005. Georgia Cotton Production Guide. Tifton, GA: University of Georgia Cooperative Extension Service Publ. CSS-05-01. 100 p.Google Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1987. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 35:199204.Google Scholar
Keeling, J. W., Everitt, J. D., and Dotray, P. A. 2004. Application timings and rates in Roundup Ready Flex cotton. Proc. South. Weed Sci. Soc 57:254.Google Scholar
Kendig, J. A. and Nichols, R. L. 2005. Palmer amaranth (Amaranthus palmeri) control. Page 2897 in Proceedings of the Beltwide Cotton Conference. Memphis, TN: National Cotton Council of America.Google Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci 42:523527.Google Scholar
Koger, C. H. and Reddy, K. N. 2005. Role of absorption and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Sci 53:8489.CrossRefGoogle Scholar
Koger, C. H., Shaner, D. L., Henry, W. B., Nadler-Hassar, T., Thomas, W. E., and Wilcut, J. W. 2005. Assessment of two nondestructive assays for detecting glyphosate resistance in horseweed (Conyza canadensis). Weed Sci 53:559566.Google Scholar
Li, J., Smeda, R. J., Sellers, B. A., and Johnson, W. G. 2005. Influence of formulation and glyphosate salt on absorption and translocation in three annual weeds. Weed Sci 53:153159.CrossRefGoogle Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., Hollinshead, P. H., Warner, S. A. J., and Presten, C. 2002. Investigations into the mechanism of glyphosate resistance in Lolium rigidum . Pest. Biochem. Physiol 74:6272.CrossRefGoogle Scholar
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol 4:163168.Google Scholar
Massinga, R. A. and Currie, R. S. 2002. Impact of Palmer amaranth (Amaranthus palmeri) on corn (Zea mays) grain yield and yield and quality of forage. Weed Technol 16:532536.Google Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. Jr. 2001. Interference of Palmer amaranth in corn. Weed Sci 49:202208.CrossRefGoogle Scholar
McKissick, J. 2004. 2003. Georgia Farm Gate Value Report. Athens, GA: The University of Georgia College of Agricultural and Environmental Sciences Area Report No. 04-01. 181 p.Google Scholar
Morgan, G. D., Baumann, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol 15:408412.Google Scholar
Morgan, R. N., Ozias-Akins, P., and Hanna, W. W. 1998. Seed set in an apomictic BC3 pearl millet. Int. J. Plant Sci 159:8997.CrossRefGoogle Scholar
Mueller, T. C., Massey, J. H., Hayes, R. M., Main, C. L., and Stewart, C. N. Jr. 2003. Shikimate accumulation in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis). J. Agric. Food Chem 51:680684.Google Scholar
Nuti, R., York, A., Bacheler, J., and Edmisten, K. 2003. Pest control costs and returns in conventional and transgenic cotton management systems. Page 2262 in Proceedings of the Beltwide Cotton Conference. Memphis, TN: National Cotton Council of America.Google Scholar
Peterson, D. E. 1999. The impact of herbicide-resistant weeds on Kansas agriculture. Weed Technol 13:632635.Google Scholar
Rayburn, A. L., McCloskey, R., Tatum, T. C., Bollero, G. A., Jeschke, M. R., and Tranel, P. J. 2005. Genome size analysis of weedy Amaranthus species. Crop Sci 45:25572562.Google Scholar
Rowland, M. W., Murry, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci 47:305309.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems. 1999. SAS/STAT User's Guide, Version 8. Cary, NC: Statistical Analysis System Institute Inc. 3884 p.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218227.Google Scholar
Shaner, D. L., Nadler-Hassar, T., Henry, W. B., and Koger, C. H. 2005. A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci 53:769774.Google Scholar
Smisek, A., Doucet, C., Jones, M., and Weaver, S. 1998. Paraquat resistance in horseweed (Conyza canadensis) and Virginia pepperweed (Lepidium virginicum) from Essex County, Ontario. Weed Sci 46:200204.Google Scholar
Smith, D. T., Baker, R. V., and Steele, G. L. 2000. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol 14:122126.CrossRefGoogle Scholar
Tranel, P. J., Wassom, J. J., Jeschke, M. R., and Rayburn, A. L. 2002. Transmission of herbicide resistance from a monoecious to a dioecious weedy Amaranthus species. Theor. Appl. Genet 105:674679.Google Scholar
Trucco, F., Jeschke, M. R., Rayburn, A. L., and Tranel, P. J. 2005. Promiscuity in weedy amaranths: high frequency of female tall waterhemp (Amarnthus tuberculatus) × smooth pigweed (A. hybridus) hybridization under field conditions. Weed Sci 53:4654.Google Scholar
[USDA-AMS] United States Department of Agriculture-Agricultural Marketing Service-Cotton Program. 2004. Cotton Varieties Planted 2004 Crop. Memphis, TN.Google Scholar
[USDA-ERS] United States Department of Agriculture-Economic Research Service. 2003. The Extent of Adoption of Bioengineereed Crops. www.ers.usda.gov/publications/aer810d.pdf.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci 49:703705.Google Scholar
Wakelin, A. M., Lorraine-Colwill, D. F., and Preston, C. 2004. Glyphosate resistance in four different populations of Lolium rigidum is associated with reduced translocation of glyphosate to meristematic zones. Weed Res 44:453459.Google Scholar
Webster, T. M. 2005. Weed survey—southern states: broadleaf crops subsection. Proc. South. Weed Sci. Soc 58:291304.Google Scholar
Wilcut, J. W., Hayes, R. L., and Nichols, R. L. et al. 2003. A beltwide regional economic assessment of weed management systems in non-transgenic and transgenic cotton. Page 2260 in Proceedings of the Beltwide Cotton Conference. Memphis, TN: National Cotton Council of America.Google Scholar
Young, B. G., Knepp, A. W., Wax, L. M., and Hart, S. E. 2003. Glyphosate translocation in common lambsquarters (Chenopodium album) and velvetleaf (Abutilon theophrasti) in response to ammonium sulfate. Weed Sci 51:151156.CrossRefGoogle Scholar