Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T06:32:49.975Z Has data issue: false hasContentIssue false

Glufosinate reduces fungal diseases in transgenic glufosinate-resistant bentgrasses (Agrostis spp.)

Published online by Cambridge University Press:  20 January 2017

Yuexia Wang
Affiliation:
Department of Plant Sciences, University of Rhode Island, Kingston, RI 02881
Marsha Browning
Affiliation:
Department of Plant Sciences, University of Rhode Island, Kingston, RI 02881
Bridget A. Ruemmele
Affiliation:
Department of Plant Sciences, University of Rhode Island, Kingston, RI 02881
Joel M. Chandlee
Affiliation:
Department of Plant Sciences, University of Rhode Island, Kingston, RI 02881
Albert P. Kausch
Affiliation:
Department of Plant Sciences, University of Rhode Island, Kingston, RI 02881

Abstract

Glufosinate-resistant transgenic creeping and velvet bentgrass plants expressing a bar gene under the control of the maize ubiquitin promoter were inoculated separately with the fungal pathogens, Rhizoctonia solani and Sclerotinia homoeocarpa, before or after treatment with 560 mg L−1 of glufosinate at a rate of 0.56 kg ha−1. Application of the herbicide 3 h before or 1 d after fungal inoculation significantly reduced infection of these transgenic grasses by R. solani and S. homoeocarpa. Assessment of the in vitro antifungal activity of the herbicide showed that 336 and 448 mg L−1 glufosinate completely inhibited the mycelial growth of S. homoeocarpa and R. solani, respectively. The results suggest that the nonselective herbicide glufosinate may also be used to suppress the activity of some fungal pathogens in turf composed of these transgenic glufosinate-resistant creeping and velvet bentgrasses.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akama, K., Puchta, H., and Hohn, B. 1995. Efficient Agrobacterium-mediated transformation of Arabidopsis thaliana using the bar gene as selectable marker. Plant Cell Rep. 14:450454.Google Scholar
Altman, J. 1985. Impact of herbicides on plant diseases. Pages 227231 In Parker, C. A., Rovira, A. D., Moore, K. J., Wong, P.T.W., and Kollmorgen, J. F., eds. Ecology and Management of Soilborne Plant Pathogens. St. Paul, MN: American Phytopathological Society.Google Scholar
Beard, J. B. 1973. Turfgrass: Science and Culture. Englewood Cliffs, NJ: Prentice-Hall. pp. 7178.Google Scholar
Black, B. D., Russin, J. S., Griffin, J. L., and Snow, J. P. 1996. Herbicide effects on Rhizoctonia solani in vitro and Rhizoctonia foliar blight of soybean (Glycine max). Weed Sci. 44:711716.Google Scholar
Casas, A. M., Kononowicz, A. K., Zehr, U. B., Tomes, D. T., Axtell, J. D., Butler, L. G., Bressan, R. A., and Hasegawa, P. M. 1993. Transgenic sorghum plants via microprojectile bombardment. Proc. Natl. Acad. Sci. USA 90:11 21211 216.Google Scholar
Christou, P., Ford, T. L., and Kofron, M. 1991. Production of transgenic rice (Oryza sativa L.) plants from agronomically important Indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9:957962.Google Scholar
Cohen, R., Riov, J., Lisker, N., and Katan, J. 1986. Involvement of ethylene in herbicide-induced resistance to Fusarium oxysporum f. ssp. melonis. Phytopathology 76:12811285.Google Scholar
De Block, M., Botterman, J., Vandewiele, M., et al. 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6:25132518.CrossRefGoogle Scholar
De Block, M., DeBrouwer, D., and Tenning, P. 1989. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91:694701.CrossRefGoogle ScholarPubMed
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Physiology of Herbicide Action. Englewood Cliffs, NJ: PTR Prentice Hall. pp. 274281.Google Scholar
El-Khadem, M., Zahran, M., and El-Kassaz, M. K. 1979. Effect of the herbicide trifluralin, dinitramine, and fluometuron on Rhizoctonia diseases in cotton. Plant Soil 51:463470.CrossRefGoogle Scholar
Grinstein, A., Elad, Y., Katan, J., and Chet, I. 1979. Control of Sclerotium rolfsii by means of an herbicide and Trichoderma harzianum. Plant Dis. Rep. 63:823826.Google Scholar
Grinstein, A., Lisker, N., Katan, J., and Eshel, Y. 1984. Herbicide-induced resistance to plant wilt diseases. Physiol. Plant Pathol. 24:347356.Google Scholar
Hardman, C. L., Lee, L., Day, P. R., and Tumer, N. E. 1994. Herbicide resistant turfgrass (Agrostis palustris Huds.) by biolistic transformation. Bio/Technology 12:919923.Google Scholar
Hoerlein, G. 1994. Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Rev. Environ. Contam. Toxicol. 138:73145.Google Scholar
Leason, M., Dunliffe, D., Parkin, D., Lea, P. J., and Miflin, B. J. 1982. Inhibition of pea leaf glutamine synthetase by methionine sulphoximine, phosphinothricin and other glutamate analogues. Phytochemistry 21:855857.CrossRefGoogle Scholar
Lee, L., Laramore, C. L., Day, P. R., and Tumer, N. E. 1996. Transformation and regeneration of creeping bentgrass (Agrostis palustris Huds.) protoplasts. Crop Sci. 36:401406.Google Scholar
Liu, C. A., Zhong, H., Vargas, J., Penner, D., and Sticklen, M. B. 1998. Prevention of fungal diseases in transgenic, bialaphos- and glufosinate-resistant creeping bentgrass (Agrostis spalustris). Weed Sci. 46:139146.Google Scholar
Murakami, T., Anzai, H., Imai, S., Satoh, A., Nagaoka, K., and Thompson, C. J. 1986. The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol. Gen. Genet. 205:4250.Google Scholar
Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473497.Google Scholar
Smiley, R. W. 1983. Compendium of Turfgrass Diseases. St. Paul, MN: The American Phytopathological Society. pp. 1172.Google Scholar
Somers, D. A., Rines, H. W., Gu, W., Kaeppler, H. F., and Bushnell, W. R. 1992. Fertile, transgenic oat plants. Bio/Technology 10:15891594.Google Scholar
Thompson, C. J., Movva, N. R., Tizard, R., Crameri, R., Davies, J. E., Lauwereys, M., and Botterman, J. 1987. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6:25192523.CrossRefGoogle ScholarPubMed
Uchimiya, H., Iwata, M., Nojiri, C., et al. 1993. Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Bio/Technology 11:835836.Google Scholar
Wan, Y. and Lemaux, P. G. 1994. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104:3748.Google Scholar
Zhong, H., Sun, B., Warkentin, D., Zhong, S., Wu, R., Wu, T., and Sticklen, M. B. 1996. The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol. 110:10971107.Google Scholar