Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T14:13:38.808Z Has data issue: false hasContentIssue false

Germination Promotion in Dormant Shepherdspurse (Capsella bursa-pastoris) Seeds by Strigol Analogs and Other Stimulants

Published online by Cambridge University Press:  12 June 2017

Judith M. Bradow*
Affiliation:
U.S. Dep. Agric., Agric. Res. Serv., Southern Regional Res. Center, New Orleans, LA 70179

Abstract

Four synthetic multiring analogs of strigol (0.1 mM) were effective as germination stimulants of dormant, unchilled seeds of shepherdspurse (Capsella bursa-pastoris (L.) Medik. # CAPBP). The effect was concentration dependent and exceeded that produced by 0.1 mM gibberellic acid (GA). The analog treatments resulted in normal, unpigmented seedlings after 7 days, whereas GA treatment led to distorted, nongeotropic, yellow seedlings. The strigol analogs were also more effective in inducing shepherdspurse germination than 10 mM nitrate or 5.0 mM thiourea (ineffective in the dark) and 5.0 mM thiourea plus 4.5 mM ascorbate (germination stimulated, but seedling growth, inhibited). Chilling at 4 C for 11 days reduced the effectiveness of the strigol analogs, but not that of gibberellic acid and thiourea plus ascorbate. Ascorbate acts synergistically with thiourea in promoting shepherdspurse germination. Strigol and epistrigol had no effect on either chilled or unchilled shepherdspurse seeds. The stimulation of dormant shepherdspurse seeds by the synthetic strigol analogs is the first demonstration that these compounds have bioregulatory activity in dormant seeds of genera other than Striga.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1986 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Babiker, A.G.T. and Hamdoun, A. M. 1982. Factors affecting the activity of GR7 in stimulating germination of Striga hermontheca (Del.). Benth. Weed Res. 22:111116.Google Scholar
2. Brown, R. and Edwards, M. 1945. Effects of thiourea and allylthiourea on the germination of the seed of Striga lutea . Nature 155:455456.CrossRefGoogle Scholar
3. Connick, W. J. Jr. and Pepperman, A. B. 1981. Preparation, isolation, and high performance liquid chromatographic separation of diastereomers or a strigol analogue. J. Agric. Food Chem. 29:984986.CrossRefGoogle Scholar
4. Cook, C. E., Whichard, L. P., Turner, B., Wall, M. E., and Egley, G. H. 1966. Germination of witchweed (Striga lutea Lour.): Isolation and properties of a potent stimulant. Science 154:11891190.Google Scholar
5. Cook, C. E., Whichard, L. P., Wall, M. E., Egley, G. H., Coggon, P., Luhan, P. A., and McPhail, A. T. 1972. Germination stimulants. II. The structure of strigol. J. Am. Chem. Soc. 94:61986199.CrossRefGoogle Scholar
6. Esashi, Y., Ohhara, Y., Okazaki, M., and Hishinuma, K. 1979. Control of cocklebur seed germination by nitrogenous compounds: nitrite, nitrate, hydroxylamine, thiourea, azide, cyanide. Plant Cell Physiol. 20:349361.Google Scholar
7. Hsiao, A. I., Worsham, A. D., and Moreland, D. E. 1981. Regulation of witchweed (Striga asiatica): conditioning and germination by dl-strigol. Weed Sci. 29:101104.Google Scholar
8. Heather, J. B., Mittal, R.S.D., and Sih, C. J. 1974. The total synthesis of racemic strigol. J. Am. Chem. Soc. 96:19761977.CrossRefGoogle Scholar
9. Heather, J. B., Mittal, R.S.D., and Sih, C. J. 1976. Synthesis of the witchweed seed germination stimulant (+)-strigol. J. Am. Chem. Soc. 98:36613669.CrossRefGoogle Scholar
10. Hendricks, S. B. and Taylorson, R. B. 1974. Promotion of seed germination by nitrate, nitrite, hydroxylamine and ammonium salts. Plant Physiol. 54:304309.CrossRefGoogle ScholarPubMed
11. Hendricks, S. B. and Taylorson, R. B. 1975. Breaking of seed dormancy by catalase inhibition. Proc. Nat. Acad. Sci. USA 72:306309.Google Scholar
12. Hurka, H. and Benneweg, M. 1979. Patterns of seed size variation in populations of the common weed Capsella bursa-pastoris (Brassicaceae). Biologisches Zentralblatt 98:699709.Google Scholar
13. Johnson, A. W., Roseberry, G., and Parker, C. 1976. A novel approach to Striga and Orobanche control using synthetic stimulants. Weed Res. 16:223227.CrossRefGoogle Scholar
14. Johnson, A. W., Gowda, G., Hassanali, A., Knox, J., Manaco, S., Rozaviz, Z., and Roseberry, G. 1981. The preparation of synthetic analogues of strigol. J. Chem. Soc. Perkin Trans. 1:17341743.CrossRefGoogle Scholar
15. Jones, R. L. and Stoddart, J. L. 1977. Gibberellins and seed germination. Pages 77109 in Khan, A. A., ed. The Physiology and Biochemistry of Seed Dormancy and Germination. Elsevier, Amsterdam, The Netherlands.Google Scholar
16. Mapson, L. W. and Moustafa, E. M. 1957. Ascorbic acid and glutathione as respiratory carriers in the respiration of pea seedlings. Biochem. J. 62:248259.CrossRefGoogle Scholar
17. Mayer, A. M., Poljakoff-Mayber, A., and Zacks, S. 1958. The interaction of thiourea and ascorbic acid in their effect on germination and growth. Bull. Res. Counc. Israel 6D:103107.Google Scholar
18. Pavlista, A. D., Worsham, A. D., and Moreland, D. E. 1979. Witchweed seed germination. II. Stimulatory and inhibitory effects of strigol and GR7 and the effects of organic solvents. Pages 228237 in Musselman, L. J., Worsham, A. D., and Eplee, R. E., eds. Proc. 2nd Symposium on Parasitic Weeds, N.C. State Univ., Raleigh, NC.Google Scholar
19. Pepperman, A. B., Connick, W. J. Jr., Vail, S. L., Worsham, A. D., Pavlista, A. D., and Moreland, D. E. 1982. Evaluation of precursors in the synthesis of strigol analogs as witchweed seed germination stimulants. Weed Sci. 30:561566.CrossRefGoogle Scholar
20. Poljakoff-Mayber, A. and Mayer, A. M. 1961. Effect of thiourea on germination and growth. Indian J. Plant Physiol. 3:125138.Google Scholar
21. Popay, A. I. and Roberts, E. H. 1970. Ecology of Capsella bursa-pastoris (L.) Medik. and Senecio vulgaris L. in relation to germination behavior. J. Ecol. 58:103122.CrossRefGoogle Scholar
22. Popay, A. I. and Roberts, E. H. 1970. Ecology of Capsella bursa-pastoris (L.) Medik. and Senecio vulgaris L. in relation to germination behavior. J. Ecol. 58:123129.CrossRefGoogle Scholar
23. Roberts, E. H. and Benjamin, S. K. 1979. The interaction of light, nitrate, and alternating temperature on the germination of Chenopodium album, Capsella bursa-pastoris and Poa annua before and after chilling. Seed Sci. Technol. 7:379392.Google Scholar
24. Roberts, E. H. and Smith, R. D. 1977. Dormancy and the pentose phosphate pathway. Pages 385411 in Khan, A. A., ed. The Physiology and Biochemistry of Seed Dormancy and Germination. Elsevier, Amsterdam, The Netherlands.Google Scholar
25. Sokal, R. R. and Rohlf, F. J. 1981. Biometry. W. H. Freeman, San Francisco.Google Scholar
26. Steinbauer, G. P., Grigsby, B., Correa, L., and Frank, P. 1955. A study of methods for obtaining laboratory germination of certain weed seeds. Assoc. Offic. Seed Anal. Proc. 45:4852.Google Scholar
27. Stevens, R. A. and Eplee, R. E. 1979. Striga germination stimulants. Pages 211214 in Musselman, L. J., Worsham, A. D., and Eplee, R. E., eds. Proc. 2nd Symposium on Parasitic Weeds, N.C. State Univ., Raleigh, NC.Google Scholar
28. Tao, K. L. and Khan, A. A. 1974. Penetration of dry seeds with chemicals applied in acetone. Plant Physiol. 54:956958.CrossRefGoogle ScholarPubMed
29. Wood, P. M. 1981. The redox potential for dimethyl sulphoxide reduction to dimethyl sulphide. FEBS Lett. 124:1114.CrossRefGoogle ScholarPubMed