Hostname: page-component-599cfd5f84-9drbd Total loading time: 0 Render date: 2025-01-07T08:35:15.250Z Has data issue: false hasContentIssue false

Germination and Dry-Matter Accumulation in Dimorphic Achenes of Tansy Ragwort (Senecio jacobaea)

Published online by Cambridge University Press:  12 June 2017

Ann L. Baker-Kratz
Affiliation:
Dep. Agron. and Soils, Washington State Univ., Pullman, WA 99164
James D. Maguire
Affiliation:
Dep. Agron. and Soils, Washington State Univ., Pullman, WA 99164

Abstract

Mature achenes from tansy ragwort (Senecio jacobaea L. ♯3 SENJA) capitula borne on lower branches had greater average dry weights and higher percentage germination than those closer to the apex, but these higher averages were obtained because more achenes in these samples were filled. Physiological maturity was attained in ray achenes 21 days past flowering (DPF), 24 DPF in peripheral disk achenes, and 27 DPF in central disk achenes. Maximum germination occurred at 18 DPF in ray and peripheral disk achenes and at 21 DPF in central disk achenes. Neither achene type was shown to have innate dormancy. Disk and ray achenes germinated most rapidly at alternating temperatures of 30/20 C.

Type
Weed Biology and Ecology
Copyright
Copyright © 1984 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Anon. 1976. The first statewide war on tansy ragwort. Oregon Agric-Rep. No. 269:46.Google Scholar
2. Bornemissza, G. F. 1966. An attempt to control ragwort in Australia with the cinnabar moth, Callimorpha jacobaea L. (Arctiidae, Lepidoptera). Aust. J. Zool. 14:201243.Google Scholar
3. Burtt, B. L. 1977. Aspects of diversification in the capitulum. Pages 4159 in Heywood, V. H., Harborne, J. B., and Turner, B. L., eds. The Biology and Chemistry of the Compositae, Vol. I. Academic Press, London.Google Scholar
4. Cameron, E. 1935. A study of the natural control of ragwort (Senecio jacobaea L.). J. Ecol. 23:265322.Google Scholar
5. Deinzer, M. L., Thompson, P. A., Burgett, C. M., and Isaacson, D. L. 1977. Pyrrolizidine alkaloids: their occurrence in honey from tansy ragwort. Science 195:497499.Google Scholar
6. Dickenson, J. O., Cooke, M. P., King, R. R., and Mohamed, P. A. 1976. Milk transfer of pyrroloizidine alkaloids in cattle. J. Am. Vet. Med. Assoc. 169:11921196.Google Scholar
7. Forbes, J. C. 1977. Population flux and mortality in a ragwort (Senecio jacobaea L.) infestation, on permanent pastures, Scotland. Weed Res. 17:387391.Google Scholar
8. Forbes, J. C. 1978. Control of Senecio jacobaea L. (ragwort) by autumn or spring herbicide application. Weed Res. 18:109110.Google Scholar
9. Green, H. E. 1937. Dispersal of Senecio jacobaea . J. Ecol. 25:569.Google Scholar
10. Grime, J. P., Mason, G., Curtis, A. V., Rodman, J., Band, S. R., Mowforth, M. A. G., Neal, A. M., and Shaw, S. 1981. A comparative study of germination characteristics in a local flora. J. Ecol. 69:10171059.Google Scholar
11. Harper, J. L. 1958. The ecology of ragwort (Senecio jacobaea) with special reference to control. Herb. Abstr. 28:151157.Google Scholar
12. Harper, J. L., Lovell, P. H., and Moore, K. G. 1970. The shapes and sizes of seeds. Annu. Rev. Ecol. Syst. 1:327356.Google Scholar
13. Harper, J. L. and Wood, W. A. 1957. Biological flora of the British Isles: Senecio jacobaea L. J. Ecol. 45:617637.Google Scholar
14. Harrington, J. F. 1972. Seed storage and longevity. Pages 145245 in Kozlowski, T. T., ed. Seed Biology, Vol. 3. Academic Press, New York.Google Scholar
15. Harris, P., Thompson, L. S., Wilkinson, A. T. S., and Neary, M. E. 1979. Reproductive biology of tansy ragwort, climate and biological control by the cinnabar moth in Canada. Pages 163173 in Freeman, T. E., ed. Proc. IV Ind. Biol. Cont. Weeds. Univ. of Florida Press, Gainesville.Google Scholar
16. Hepworth, H. M. and Guelette, L. O. 1979. Tansy ragwort. Pacific Northwest Ext. Pub. 175.4 pp.Google Scholar
17. Hitchcock, C. L., Cronquist, A., Ownbey, M., and Thompson, J. W. 1955. Vascular plants of the Pacific Northwest. Part 5: Compositae. Univ. of Washington Press, Seattle. 343 pp.Google Scholar
18. Isaacson, D. L. 1975. Economic Losses to Tansy Ragwort. Oregon Weed Conference Proceedings, 24th Annual, 13.Google Scholar
19. Maguire, J. D. 1962. Speed of germination-aid in selection and evaluation of seedling emergence and vigor. Crop Sci. 2:176177.Google Scholar
20. Maguire, J. D. and Overland, A. 1959. Laboratory germination of seeds of weedy and native plants. Washington Agr. Exp. Stn. Circ. No. 349. 15 pp.Google Scholar
21. McEvoy, P. B. 1984. Dormancy and dispersal in dimorphic achenes of tansy ragwort, Senecio jacobaea L. (Compositae). Oecologia 61:160168.Google Scholar
22. Meijden, E. van der and van der Waals-kooi, R. E. 1979. The population ecology of Senecio jacobaea in the Netherlands sand dune system. I. Reproductive strategy and the biennial habit. J. Ecol. 67:131154.Google Scholar
23. Muth, O. H. 1968. Tansy ragwort (Senecia jacobaea), a Potential Menace to Livestock. J. Am. Vet. Med. Assoc. 153:310312.Google Scholar
24. Otzen, D. 1977. Life forms of three Senecio species in relation to accumulation and utilization of non-structural carbohydrates Acta. Bot. Neerl. 26:401409.Google Scholar
25. Poole, A. L. and Cairns, D. 1940. Botanical aspects of ragwort (Senecio jacobaea L.) control. Bull. N. Z. Dep. Sci. Indust. Res. 82:166.Google Scholar
26. Schmidl, L. 1972. Biology and control of ragwort, Senecio jacobaea L., in Victoria, Australia. Weed Res. 12:3745.Google Scholar
27. Segall, H. J. and Krick, T. P. 1979. Pyrrolizidine alkaloids: Organohalogen derivative isolated from Senecio jacobaea . Toxicol. Lett. 4:193198.Google Scholar
28. Snyder, S. P. 1972. Livestock Losses due to Tansy Ragwort Poisoning. Oregon Agric. Rep. No. 225:34.Google Scholar