Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T19:58:37.693Z Has data issue: false hasContentIssue false

Genetic relationships of common cocklebur accessions from the United States

Published online by Cambridge University Press:  20 January 2017

James J. Wassom
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801

Abstract

DNA fragment analysis, based on amplification of intersimple sequence repeats by the polymerase chain reaction (ISSR-PCR), was used to assess genetic relationships of 217 U.S. accessions of common cocklebur. Twenty-four polymorphic markers were generated from six primers. Analysis of genetic similarity by clustering procedures resulted in separation of the accessions into two main clusters. Accessions within these two clusters were designated as either northern or southern genotypes. Forty-four of 48 accessions analyzed from Washington, Michigan, Iowa, and Ohio were northern genotypes, whereas 67 of 68 accessions analyzed from Mississippi, Arkansas, South Carolina, and North Carolina were southern genotypes. Accessions from Kansas, Missouri, and Illinois included 40 and 56 northern and southern genotypes, respectively, indicating a transition zone. In Illinois, accessions collected from northern and southern counties tended to be northern and southern genotypes, respectively. We conclude that much of the genetic variation among U.S. common cocklebur accessions is distributed along a latitudinal gradient.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baldoni, G., Viggiani, P., Bonetti, A., Dinelli, F., and Catizone, P. 2000. Classification of Italian Xanthium strumarium complex based on biological traits, electrophoretic analysis and response to maize interference. Weed Res. 40:191204.Google Scholar
Barrentine, W. L. 1974. Common cocklebur competition in soybeans. Weed Sci. 22:600603.Google Scholar
Barrentine, W. L., Soignier, S. S., and Kilen, T. C. 1995. Characterization of a common cocklebur (Xanthium strumarium L.) biotype resistant to the imidazolinone herbicides. Weed Sci. Soc. Am. Abstr. 35:135.Google Scholar
Bloomberg, J. R., Kirkpatrick, B. L., and Wax, L. M. 1982. Competition of common cocklebur (Xanthium pensylvanicum) with soybean (Glycine max). Weed Sci. 30:507513.Google Scholar
Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314331.Google Scholar
Burton, K. 1968. Determination of DNA concentration with diphenylamine. Pages 163166 In Grossman, L. and Moldave, K., eds. Methods in Enzymology. Volume 12, Part B. New York: Academic Press.Google Scholar
Byrd, J. D. Jr. and Coble, H. D. 1991. Interference of common cocklebur (Xanthium strumarium) and cotton (Gossypium hirsutum). Weed Technol. 5:270278.Google Scholar
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:1315.Google Scholar
Fernald, M. L. 1970. Gray's Manual of Botany. 8th ed. New York: D. Ban Nostrand. pp. 14701472.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds. Distribution and Biology. Honolulu: University Press. pp. 479481.Google Scholar
Kashi, Y., King, D., and Soller, M. 1997. Simple sequence repeats as a source of quantitative genetic variation. Trends Genet. 13:7478.Google Scholar
Leonard, M., Kinet, J. M., Bodson, M., Havelange, A., Jacqmard, A., and Bernier, G. 1981. Flowering in Xanthium strumarium . Inititation and development of female inflorescence and sex expression. Plant Physiol. 67:12451249.Google Scholar
Löve, D. and Dansereau, P. 1959. Biosystematic studies on Xanthium: taxonomic appraisal and ecological status. Can. J. Bot. 37:173208.Google Scholar
Marwat, K. B. and Nafziger, E. D. 1990. Cocklebur and velvetleaf interference with soybean grown at different densities and planting patterns. Agron. J. 82:531534.Google Scholar
McMillan, C. 1970. Photoperiod in Xanthium populations from Texas and Mexico. Am. J. Bot. 57:881888.Google Scholar
McMillan, C. 1975. The Xanthium strumarium complexes in Australia. Aust. J. Bot. 23:173–92.Google Scholar
Moran, G. F. and Marshall, D. R. 1978. Allozyme uniformity within and variation between races of the colonizing species Xanthium strumarium L. (Noogoora Burr). Aust. J. Biol. Sci. 31:283291.Google Scholar
Mosier, D. G. and Oliver, L. R. 1995. Soybean (Glycine max) interference on common cocklebur (Xanthium strumarium) and entireleaf morningglory (Ipomoea hederacea var. integriuscula). Weed Sci. 43:402409.Google Scholar
Nei, M. and Li, W. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76:52695273.Google Scholar
Queller, D. C., Strassmann, J. E., and Hughes, C. R. 1993. Microsatellites and kinship. Trends Ecol. Evol. 8:285288.CrossRefGoogle ScholarPubMed
Ray, P. M. and Alexander, W. W. 1966. Photoperiodic adaptation to latitude in Xanthium strumarium . Am. J. Bot. 53:806816.CrossRefGoogle Scholar
Rohlf, F. J. 1998. NTSYS. Numerical Taxonomy and Multivariate Analysis System. Version 2.0. Setauket, NY: Exeter Software.Google Scholar
Royal, S. S., Brecke, B. J., and Colvin, D. L. 1997. Common cocklebur (Xanthium strumarium) interference with peanut (Arachis hypogaea). Weed Sci. 45:3843.Google Scholar
Rushing, G. S. and Oliver, L. R. 1998. Influence of planting date on commmon cocklebur (Xanthium strumarium) interference in early-maturing soybean (Glycine max). Weed Sci. 46:99104.CrossRefGoogle Scholar
Salimath, S. S., de Oliveira, A. C., Godwin, I. D., and Bennetzen, J. L. 1995. Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers. Genome 38:757763.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Sánchez de la Hoz, M. P., Dávila, J. A., Loarce, Y., and Ferrer, E. 1996. Simple sequence repeat primers used in polymerase chain reaction amplifications to study genetic diversity in barley. Genome 39:112117.Google Scholar
Tanksley, S. D., Young, N. D., Paterson, A. H., and Bonierbale, M. W. 1989. RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7:257264.Google Scholar
Vos, P., Hogers, R., Bleeker, M., et al. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:44074414.Google Scholar
Weaver, S. E. and Lechowicz, M. J. 1983. The biology of Canadian weeds. 56. Xanthium strumarium L. Can. J. Plant Sci. 63:211225.CrossRefGoogle Scholar
Weber, J. L. and May, P. E. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44:388396.Google Scholar
Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:65316535.CrossRefGoogle ScholarPubMed
Wolfe, A. D., Xiang, Q., and Kephart, S. R. 1998a. Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Mol. Ecol. 7:11071125.Google Scholar
Wolfe, A. D., Xiang, Q., and Kephart, S. R. 1998b. Diploid hybrid speciation in Penstemon (Scrophulariaceae). Proc. Natl. Acad. Sci. USA 95:51125115.Google Scholar
Zietkiewicz, E., Rafalski, A., and Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176183.Google Scholar