Published online by Cambridge University Press: 12 June 2017
Rapid absorption and acropetal translocation of 14C from p-nitrophenyl-α,α,α-trifluoro-2-nitro-p-tolyl ether (fluorodifen) labeled with 14C at either the 1 position of the p-nitrophenyl ring (fluorodifen-1′-14C) or the trifluoromethyl carbon (fluorodifen-14CF3) were observed in cucumber (Cucumis sativus L. ‘Ashley’) seedlings after root treatment via nutrient solution. The major degradative products of fluorodifen-1′-14C were p-nitrophenol and Unknown I (possibly a conjugate of p-nitrophenol). Some p-nitrophenyl-α,α,α-trifluoro-2-amino-p-tolyl ether (2-amino-fluorodifen), p-aminophenyl-α,α,α-trifluoro-2-amino-p-tolyl ether (p,2-diamino-fluorodifen), p-aminophenyl-α,α,α-trifluoro-2-nitro-p-tolyl ether (p-amino-fluorodifen), and several minor unknowns also were detected. The major degradative product of fluorodifen−14CF3 was Unknown II (possibly a conjugate of 2-amino-4-trifluoromethylphenol). Also detected were some 2-amino-fluorodifen, 2-amino-4-trifluoromethylphenol, p-amino-fluorodifen, p2-diamino-fluorodifen, 2-nitro-4-trifluoromethylphenol, and several minor unknowns. The basic difference in susceptibility to fluorodifen of cucumber and peanut (Arachis hypogaea L. ‘Starr’) appears to be due to the rate of acropetal translocation (cucumber translocates more than peanut) and the rate of degradation (peanut degrades fluorodifen much more rapidly than cucumber).