Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T13:27:27.328Z Has data issue: false hasContentIssue false

Factors Affecting Differential Sensitivity of Sweet Corn to HPPD-Inhibiting Herbicides

Published online by Cambridge University Press:  20 January 2017

Martin M. Williams II*
Affiliation:
U.S. Department of Agriculture–Agricultural Research Service, Global Change and Photosynthesis Research, University of Illinois, 1102 S. Goodwin Avenue, Urbana, IL 61801
Jerald K. Pataky
Affiliation:
Department of Crop Sciences, University of Illinois, 1102 S. Goodwin Avenue, Urbana, IL 61801
*
Corresponding author's E-mail: [email protected]

Abstract

Mutation of a cytochrome P450 (CYP) allele on the short arm of chromosome 5 affects sensitivity in sweet corn to mesotrione and to tembotrione plus isoxadifen applied POST. Hybrids that are homozygous for the functional allele (i.e., CYPCYP) are rarely injured at registered use rates, hybrids that are homozygous for mutant alleles (i.e., cypcyp) are frequently injured, and hybrids that are heterozygous for a functional and mutant allele (i.e., CYPcyp) have more variable responses over trials. The objectives of this work were (1) to conduct side-by-side comparisons of sweet corn hybrid responses to mesotrione, tembotrione plus isoxadifen, and topramezone under field conditions; and (2) to compare dose–response relationships among CYPCYP, CYPcyp, and cypcyp hybrids. Among 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors used POST in sweet corn, topramezone was safe on the 746 hybrids tested. When environmental conditions favored crop growth, mesotrione injured the largest number of hybrids, and these hybrids were almost exclusively cypcyp or CYPcyp. The safener isoxadifen added to the tembotrione product greatly reduced occurrence of injury to the CYPcyp genotypic class but not to the cypcyp hybrids. Despite a common genetic basis for herbicide metabolism, genotypic classes of sweet corn hybrids did not have identical field responses to mesotrione, tembotrione plus isoxadifen, and topramezone.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous 2003. CallistoTM herbicide product label. SCP Publication No. 1131A-L1G. Greensboro, NC: Syngenta Crop Protection.Google Scholar
Barrett, M. 2000. The role of cytochrome P450 enzymes in herbicide metabolism. Pages 2537. in Cobb, A. H. and Kirkwood, R. C. eds. Herbicides and Their Mechanisms of Action. Boca Raton, FL: CRC.Google Scholar
Barrett, M., Bradshaw, L. D., Polge, N. D., Baerg, R. J., and Poneleit, C. G. 1994. Evidence for multiple herbicide metabolizing cytochrome P450 from maize. Weed Sci. Soc. Am. Abstr. 34:60.Google Scholar
Bollman, J. D., Boerboom, C. M., Becker, R. L., and Fritz, V. A. 2008. Efficacy and tolerance to HPPD-inhibiting herbicides in sweet corn. Weed Technol. 22:666674.Google Scholar
Bunting, J. A., Sprague, C. L., and Riechers, D. E. 2003. Proper adjuvant selection for foramsulfuron activity. Crop Prot. 23:361366.Google Scholar
Grossman, K. and Ehrhardt, T. 2007. On the mechanism of action and selectivity of the corn herbicide topramezone: a new inhibitor of 4-hydroxyphenylpyruvate dioxygenase. Pest Manag Sci. 63:429439.Google Scholar
Hatterman-Valenti, H. M., Pitty, A., and Owen, M. D. K. 2006. Effect of environment on giant foxtail (Setaria faberi) leaf wax and fluazifop-P absorption. Weed Sci. 54:607614.Google Scholar
Heap, I. 2009. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/In.asp. Accessed: September 23, 2009.Google Scholar
Hull, H. M., Morton, H. L., and Wharrie, J. R. 1975. Environmental influences on cuticle development and resultant foliar penetration. Bot. Rev. 41:421432.Google Scholar
Lindquist, J. L., Mortensen, D. A., Clay, S. A., Schmenk, R., Kells, J. J., Howatt, K., and Westra, P. 1996. Stability of corn (Zea mays)–velvetleaf (Abutilon theophrasti) interference relationships. Weed Sci. 44:309313.Google Scholar
Mitchell, G., Bartlett, D. W., Fraser, T. E. M., Hawkes, T. R., Holt, D. C., Townson, J. K., and Wichert, R. A. 2001. Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci. 57:120128.Google Scholar
Nordby, J. N., Williams, M. M. II, Pataky, J. K., Riechers, D. E., and Lutz, J. D. 2008. A common genetic basis in sweet corn inbred Cr1 for cross sensitivity to multiple cytochrome P450-metabolized herbicides. Weed Sci. 56:376382.Google Scholar
O'Sullivan, J., Zandstra, J., and Sikkema, P. 2002. Sweet corn (Zea mays) cultivar sensitivity to mesotrione. Weed Technol. 16:421425.Google Scholar
Pataky, J. K., Meyer, M. D., Bollman, J. D., Boerboom, C. M., and Williams, M. M. II. 2008. Genetic basis for varied levels of injury to sweet corn hybrids from three cytochrome P450-metabolized herbicides. J. Am. Soc. Hortic. Sci. 133:438447.Google Scholar
Pataky, J. K., Williams, M. M. II, Riechers, D. E., and Meyer, M. D. 2009. A common genetic basis for cross-sensitivity to mesotrione and nicosulfuron in sweet corn hybrid cultivars and inbreds grown throughout North America. J. Am. Soc. Hortic. Sci. 134:252260.Google Scholar
Ratkowsky, D. A. 1983. Nonlinear Regression Modeling: A Unified Practical Approach. New York: Marcel Dekker. 135157.Google Scholar
Schulte, W. and Köcher, H. 2009. Tembotrione and combination partner isoxadifen-ethyl – mode of herbicidal action. Bayer Crop Sci. J. 62:3551.Google Scholar
Soltani, N., Sikkema, P. H., Zandstra, J., O'Sullivan, J., and Robinson, D. E. 2007. Response of eight sweet corn (Zea mays L.) hybrids to topramezone. Hortscience. 42:110112.Google Scholar
[USEPA] U.S. Environmental Protection Agency 2007. Pesticide Fact Sheet. http://www.epa.gov/opprd001/factsheets/tembotrione.pdf. Accessed: September 23, 2009.Google Scholar
Williams, M., Sowinski, S., Dam, T., and Li, B. L. 2006. Map-based cloning of the nsf1 gene of maize. Pages 49. in. Program and Abstracts of the 48th Maize Genetics Conference. Ames, IA: Maize Genetics and Genomics Database Steering Committee.Google Scholar
Williams, M. M. II and Pataky, J. K. 2008. Genetic basis of sensitivity in sweet corn to tembotrione. Weed Sci. 56:364370.Google Scholar
Williams, M. M. II, Wax, L. M., Pataky, J. K., and Meyer, M. D. 2008. Further evidence of a genetic basis for varied levels of injury to sweet corn hybrids from cytochrome P450-metabolized herbicides applied postemergence. Hortscience. 43:20932097.Google Scholar
Young, B. G. and Hart, S. E. 1998. Optimizing foliar activity of isoxaflutole on giant foxtail (Setaria faberi) with various adjuvants. Weed Sci. 46:397402.Google Scholar