Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T14:52:46.717Z Has data issue: false hasContentIssue false

The Evolution and Genetics of Herbicide Resistance in Weeds

Published online by Cambridge University Press:  12 June 2017

Marie Jasieniuk
Affiliation:
Dep. Plant Sci., Univ. Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
Anita L. Brûlé-Babel
Affiliation:
Dep. Plant Sci., Univ. Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
Ian N. Morrison
Affiliation:
Dep. Plant Sci., Univ. Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2

Abstract

The importance of various factors influencing the evolution of herbicide resistance in weeds is critically examined using population genetic models. The factors include gene mutation, initial frequency of resistance alleles, inheritance, weed fitness in the presence and absence of herbicide, mating system, and gene flow. Where weed infestations are heavy, the probability of selecting for resistance can be high even when the rate of mutation is low. Subsequent to the occurrence of a resistant mutant, repeated treatments with herbicides having the same mode of action can lead to the rapid evolution of a predominantly resistant population. At a given herbicide selection intensity, the initial frequency of resistance alleles determines the number of generations required to reach a specific frequency of resistant plants. The initial frequency of resistance alleles has a greater influence on the evolutionary process when herbicides impose weak selection, as opposed to very strong selection. Under selection, dominant resistance alleles increase in frequency more rapidly than recessive alleles in random mating or highly outcrossing weed populations. In highly self-fertilizing species, dominant and recessive resistance alleles increase in frequency at approximately the same rate. Gene flow through pollen or seed movement from resistant weed populations can provide a source of resistance alleles in previously susceptible populations. Because rates of gene flow are generally higher than rates of mutation, the time required to reach a high level of resistance in such situations is greatly reduced. Contrary to common misconception, gene flow from a susceptible population to a population undergoing resistance evolution is unlikely to slow the evolutionary process significantly. Accurate measurements of many factors that influence resistance evolution are difficult, if not impossible, to obtain experimentally. Thus, the use of models to predict times to resistance in specific situations is markedly limited. However, with appropriate assumptions, they can be invaluable in assessing the relative effectiveness of various management practices to avoid, or delay, the occurrence of herbicide resistance in weed populations.

Type
Special Topics
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ahrens, W. H. and Stoller, E. W. 1983. Competition, growth rate, and CO2 fixation in triazine-susceptible and -resistant smooth pigweed (Amaranthus hybridus). Weed Sci. 31: 438444.CrossRefGoogle Scholar
2. Alcocer-Ruthling, M., Thill, D. C., and Shaft, R. 1992. Differential competitiveness of sulfonylurea resistant and susceptible prickly lettuce (Lactuca serriola). Weed Technol. 6: 303309.Google Scholar
3. Alcocer-Ruthling, M., Thill, D. C., and Shafi, R. 1992. Seed biology of sulfonylurea-resistant and -susceptible biotypes of prickly lettuce (Lactuca serriola). Weed Technol. 6: 858864.CrossRefGoogle Scholar
4. Andersen, R. N. and Gronwald, J. W. 1987. Noncytoplasmic inheritance of atrazine tolerance in velvetleaf (Abutilon theophrasti). Weed Sci. 35: 496498.Google Scholar
5. Antonovics, J. 1968. Evolution in closely adjacent plant populations. VI. Manifold effects of gene flow. Heredity 23: 507524.Google Scholar
6. Arntzen, C. J. and Duesing, J. H. 1983. Chloroplast-encoded herbicide resistance. Pages 273294 in Downey, K., Voellmy, R. W., Ahmad, F., and Schultz, J., eds. Advances in Gene Technology: Molecular Genetics of Plants and Animals. Academic Press. New York.CrossRefGoogle Scholar
7. Barr, A. R., Mansooji, A. M., Holtum, J. A. M., and Powles, S. B. 1992. The inheritance of herbicide resistance in Arena sterilis ssp. ludoviciana, biotype SAS 1. Proc. First Int. Weed Control Congr. 2: 7072.Google Scholar
8. Beckie, H. J. and Morrison, I. N. 1993. Effective kill of trifluralin-susceptible and -resistant green foxtail (Setaria viridis). Weed Technol. 7: 1522.Google Scholar
9. Bettini, P., McNally, S., Sevignac, M., Darmency, H., Gasquez, J., and Dron, M. 1987. Atrazine resistance in Chenopodium album: low and high levels of resistance to the herbicide are related to the same chloroplast psbA gene mutation. Plant Physiol. 84: 14421446.Google Scholar
10. Belts, K. J., Ehlke, N. J., Wyse, D. L., Gronwald, J. W., and Somers, D. A. 1992. Mechanism of inheritance of diclofop resistance in Italian ryegrass (Lolium multiflorum). Weed Sci. 40: 184189.Google Scholar
11. Beversdorf, W. D., Hume, D. J., and Donnelly-Vanderloo, M. J. 1988. Agronomic performance of triazine-resistant and susceptible reciprocal spring canola hybrids. Crop Sci. 28: 932934.CrossRefGoogle Scholar
12. Bourdot, G. W., Hurrell, G. A., and Saville, D. J. 1990. Variation in MCPA-resistance in Ranunculus acris L. subsp. acris and its correlation with historical exposure to MCPA. Weed Res. 30: 449457.Google Scholar
13. Brown, A. H. D. and Burdon, J. J. 1987. Mating systems and colonizing success in plants. Pages 115131 in Gray, A. J., Crawley, M. J., and Edwards, P. J., eds. Colonization, Succession, and Stability. Blackwell Scientific Publ., Oxford.Google Scholar
14. Brown, A. H. D. and Marshall, D. R. 1981. Evolutionary changes accompanying colonization in plants. Pages 351363 in Scudder, G. G. E. and Reveal, J. L., eds. Evolution Today. Proc. 2nd Int. Congress Syst. Evol. Biol. Carnegie-Mellon Univ., Pittsburgh.Google Scholar
15. Charlesworth, B. 1992. Evolutionary rates in partially self-fertilizing species. Am. Nat. 140: 126148.Google Scholar
16. Chauvel, B. 1991. Polymorphisme génétique et sélection de la résistance aux urées suhstituées chez Alopecurus myosuroides Huds. . Université de Paris-Sud. 130 pp.Google Scholar
17. Clark, A. G. 1984. Natural selection with nuclear and cytoplasmic transmission. I. A deterministic model. Genetics 107: 679701.Google ScholarPubMed
18. Conard, S. G. and Radosevich, S. R. 1979. Ecological fitness of Senecio vulgaris and Amaranthus retroflexus biotypes susceptible or resistant to atrazine. J. Appl. Ecol. 16: 171177.CrossRefGoogle Scholar
19. Crow, J. F. and Kimura, M. 1970. An Introduction to Population Genetics Theory. Harper & Row Publ., New York. 591 pp.Google Scholar
20. Darmency, H. and Gasquez, J. 1981. Inheritance of triazine resistance in Poa annua: consequences for population dynamics. New Phytol. 89: 487493.CrossRefGoogle Scholar
21. Darmency, H. and Gasquez, J. 1985. Triazine herbicide resistance in Chenopodium album L.: occurrence and characteristics of an intermediate biotype. Pestic. Sci. 16: 390395.Google Scholar
22. Darmency, H. and Gasquez, J. 1990. Appearance and spread of triazine resistance in common lambsquarters (Chenopodium album). Weed Technol. 4: 173177.CrossRefGoogle Scholar
23. Darmency, H. and Gasquez, J. 1990. Fate of herbicide resistance genes in weeds. Pages 353363 in Green, M. B., Moberg, W. K., and LeBaron, H., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. American Chemical Soc., Washington, D.C. Google Scholar
24. DeGennaro, F. P. and Weller, S. C. 1984. Differential susceptibility of field bindweed (Convolvulus arvensis) biotypes to glyposate. Weed Sci. 32: 472476.Google Scholar
25. Devlin, B. and Ellstrand, N. C. 1990. The development and application of a refined method for estimating gene flow from angiosperm paternity analysis. Evolution 44: 248259.Google Scholar
26. Douglas, B. J., Thomas, A. G., Morrison, I. N., and Maw, M. G. 1985. The biology of Canadian weeds. 70. Setaria viridis (L.) Beauv. Can. J. Plant Sci. 65: 669690.CrossRefGoogle Scholar
27. Duesing, J. 1983. Genetic analysis of herbicide resistance. NCWCC Proceedings 38: 143147.Google Scholar
28. Duesing, J. H. and Yue, S. 1983. Evidence for a plastome mutator (cpm) in triazine-resistant Solatium nigrum . Weed Sci. Soc. Amer. Abstr. Pages 7778.Google Scholar
29. Ehrlich, P. R. and Raven, P. H. 1969. Differentiation of populations. Science 165: 12281232.CrossRefGoogle ScholarPubMed
30. Ellis, M. and Kay, Q. O. N. 1975. Genetic variation in herbicide resistance in scentless mayweed (Tripleurospemum inodorum (L.) Schultz Bip.) I. Differences between populations in response to MCPA. Weed Res. 15: 285293.Google Scholar
31. Ellis, M. and Kay, Q. O. N. 1975. Genetic variation in herbicide resistance in scentless mayweed (Tripleurospermum inodorum (L.) Schultz Bip.) II. Intraspecific variation in response to MCPA and ioxynil, and the role of spray retention characteristics. Weed Res. 15: 295304.Google Scholar
32. Ellis, M. and Kay, Q. O. N. 1975. Genetic variation in herbicide resistance in scentless mayweed (Tripleurospermum inodorum (L.) Schultz Bip.) III. Selection for increased resistance to ioxynil, MCPA and simazine. Weed Res. 15: 327333.Google Scholar
33. Ellstrand, N. C. and Marshall, D. L. 1985. Interpopulation gene flow by pollen in wild radish, Raphanus sativus . Am. Nat. 126: 606616.CrossRefGoogle Scholar
34. Falconer, D. S. 1989. Introduction to Quantitative Genetics. 3rd Edition. Longman Scientific & Technical, New York. 438 pp.Google Scholar
35. Faulkner, J. S. 1974. Heritability of paraquat tolerance in Lolium perenne L. Euphytica 23: 281288.Google Scholar
36. Gasquez, J. and Compoint, J.-P. 1981. Enzymatic variations in populations of Chenopodium album L. resistant and susceptible to triazines. Agroeco-system 7: 110.Google Scholar
37. Gasquez, J., Al Mouemar, A., and Darmency, H. 1985. Triazine herbicide resistance in Chenopodium album L.: occurrence and characteristics of an intermediate biotype. Pestic. Sci. 16: 390395.CrossRefGoogle Scholar
38. Gasquez, J., Darmency, H., and Compoint, J.-P. 1981. Étude de la transmission de la résistance chloroplastique aux triazines chez Solanum nigrum L. C. R. Acad. Sc. Paris, t. 292. Série III:847849.Google Scholar
39. Gressel, J. and Ben-Sinai, G. 1985. Low intraspecific competitive fitness in a triazine-resistant, nearly nuclear-isogenic line of Brassica napus . Pages 489504 in van Vloten-Doting, L., Groot, G. S. P., and Hall, T. C., eds. Molecular Form and Function of the Plant Genome. Plenum Press, New York.Google Scholar
40. Gressel, J. and Segel, L. A. 1978. The paucity of plants evolving genetic resistance to herbicides: possible reasons and implications. J. Theor. Biol. 75: 349371.Google Scholar
41. Gressel, J. and Segel, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance: the outlook for the future. Pages 325347 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley & Sons, New York.Google Scholar
42. Gressel, J. and Segel, L. A. 1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4: 186198.Google Scholar
43. Gressel, J. and Segel, L. A. 1990. Herbicide rotations and mixtures: effective strategies to delay resistance. Pages 430458 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. American Chemical Soc, Washington, D.C. Google Scholar
44. Haigler, W. E., Gossett, B. J., Harris, J. R., and Toler, J. E. 1994. Growth and development of organic arsenical-susceptible and -resistant common cocklebur (Xanthium strumarium) biotypes under noncompetitive conditions. Weed Technol. 8: 154158.Google Scholar
45. Haldane, J. B. S. 1924. A mathematical theory of natural and artificial selection. I. Trans. Cambr. Phil. Soc. 23: 1941.Google Scholar
46. Hamrick, J. L. 1982. Plant population genetics and evolution. Amer. J. Bot. 69: 16851693.Google Scholar
47. Harms, C. T. and DiMaio, J. J. 1991. Primisulfuron herbicide-resistant tobacco cell lines. Application of fluctuation test design to in vitro mutant selection with plant cells. J. Plant Physiol. 137: 513519.Google Scholar
48. Hartl, D. L. and Clark, A. G. 1989. Principles of Population Genetics, 2nd Edition. Sinauer Associates Inc., Sunderland. 682 pp.Google Scholar
49. Hirschberg, J., Bleecker, A., Kyle, D. J., McIntosh, L., and Arntzen, C. J. 1984. The molecular basis of triazine-herbicide resistance in higher-plant chloroplasts. Z. Naturforsch. 39c: 412420.CrossRefGoogle Scholar
50. Hirschberg, J. and McIntosh, L. 1983. Molecular basis for herbicide resistance in Amaranthus hybridus . Science 22: 13461349.Google Scholar
51. Holliday, R.J. and Putwain, P.D. 1980. Evolution of herbicide resistance in Senecio vulgaris: variation in susceptibility to simazine between and within populations. J. Appl. Ecol. 17: 779791.CrossRefGoogle Scholar
52. Holt, J. S. 1988. Reduced growth, competitiveness, and photosynthetic efficiency of triazine-resistant Senecio vulgaris from California. J. Appl. Ecol. 25: 307318.CrossRefGoogle Scholar
53. Holt, J. S. 1990. Fitness and ecological adaptability of herbicide-resistant biotypes. Pages 419429 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. American Chemical Soc., Washington, D.C. Google Scholar
54. Holt, J. S. and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol. 4: 141149.Google Scholar
55. Holt, J. S. and Radosevich, S. R. 1983. Differential growth of two common groundsel (Senecio vulgaris) biotypes. Weed Sci. 31: 112120.Google Scholar
56. Islam, A. K. and, M. R. Powles, S. B. 1988. Inheritance of resistance to paraquat in barley grass Hordeum glaucum Steud. Weed Res. 28: 393397.Google Scholar
57. Itoh, K. and Matsunaka, S. 1990. Parapatric differentiation of paraquat resistant biotypes in some Compositae species. Pages 3349 in Kawano, S., ed. Biological Approaches and Evolutionary Trends in Plants. Academic Press, London.Google Scholar
58. Itoh, K. and Miyahara, M. 1984. Inheritance of paraquat resistance in Erigeron philadelphicus L. Weed Res. (Japan) 29: 4752.Google Scholar
59. Jacobs, B. F., Duesing, J. H., Antonovics, J., and Patterson, D. T. 1988. Growth performance of triazine-resistant and -susceptible biotypes of Solanum nigrum over a range of temperatures. Can. J. Bot. 66: 847850.CrossRefGoogle Scholar
60. Jacobsohn, R. and Andersen, R. N. 1968. Differential response of wild oat lines to diallate, triallate, and barban. Weed Sci. 16: 491494.CrossRefGoogle Scholar
61. James, J. W. 1965. Simultaneous selection for dominant and recessive mutants. Heredity 20: 142144.CrossRefGoogle Scholar
62. Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1994. Inheritance of trifluralin resistance in green foxtail (Setaria viridis). Weed Sci. 42: 123127.CrossRefGoogle Scholar
63. Jasieniuk, M., Morrison, I. N., and Brûlé-Babel, A. L. 1994. Inheritance of dicamba resistance in wild mustard (Brassica kaber). Weed Sci. 43: 192195.Google Scholar
64. Lande, R. 1983. The response to selection on major and minor mutations affecting a metrical trait. Heredity 50: 4765.Google Scholar
65. LeBaron, H. M. 1991. Distribution and seriousness of herbicide-resistant weed infestations worldwide. Pages 2743 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworth-Heinemann Ltd., Oxford.CrossRefGoogle Scholar
66. LeBaron, H. M. and McFarland, J. 1990. Herbicide resistance in weeds and crops: an overview and prognosis. Pages 336352 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. American Chemical Soc., Washington, DC.Google Scholar
67. Levin, D. A. 1979. The nature of plant species. Science 204: 381384.Google Scholar
68. Levin, D. A. 1981. Dispersal versus gene flow in plants. Ann. Mo. Bot. Gard. 68: 233253.Google Scholar
69. Levin, D. A. 1984. Immigration in plants: an exercise in the subjunctive. Pages 242260 in Dirzo, R. and Sarukhán, J., eds. Perspectives on Plant Population Ecology. Sinauer Associates, Sunderland, Mass.Google Scholar
70. Levin, D. A. and Kerster, H. W. 1974. Gene flow in seed plants. Evol. Biol. 7: 139220.Google Scholar
71. Macnair, M. R. 1991. Why the evolution of resistance to anthropogenic toxins normally involves major gene changes: the limits to natural selection. Genetica 84: 213219.Google Scholar
72. Macnair, M. R. and Cumbes, Q. R. 1989. The genetic architecture of interspecific variation in Mimulus . Genetics 122: 211222.Google Scholar
73. Mallory-Smith, C. A., Thill, D. C., Dial, M. J., and Zemetra, R. S. 1990. Inheritance of sulfonylurea resistance in Lactuca spp. Weed Technol. 4: 787790.Google Scholar
74. Marriage, P. B. and Warwick, S. I. 1980. Differential growth and response to atrazine between and within susceptible and resistant biotypes of Chenopodium album L. Weed Res. 20: 915.CrossRefGoogle Scholar
75. Marshall, G., Kirkwood, R. C., and Leach, G. E. 1993. Comparative studies on graminicide-resistant and susceptible biotypes of Eleusine indica . Weed Res. 34: 177185.Google Scholar
76. Matthews, J. M. and Powles, S. B. 1992. Aspects of the population dynamics of selection for herbicide resistance in Lolium rigidum (Gaud.). Proc First Int. Weed Control Congr. 2: 318320.Google Scholar
77. Maxwell, B. D. 1992. Predicting gene flow from herbicide resistant weeds in annual agriculture systems. Bull. Ecol. Soc. Am. Abstr. 73: 264.Google Scholar
78. Maxwell, B. D. and Ghersa, C. 1992. The influence of weed seed dispersion versus the effect of competition on crop yield. Weed Technol. 6: 196204.Google Scholar
79. Maxwell, B. D., Roush, M. L., and Radosevich, S. R. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol. 4: 213.CrossRefGoogle Scholar
80. McCanny, S. J. and Cavers, P. B. 1988. Spread of proso millet (Panicum miliaceum) in Ontario Canada. 2. Dispersal by combines. Weed Res. 28: 6772.Google Scholar
81. McCloskey, W. B. and Holt, J. S. 1990. Triazine resistance in Senecio vulgaris parental and nearly isonuclear backcrossed biotypes is correlated with reduced productivity. Plant Physiol. 92: 954962.CrossRefGoogle ScholarPubMed
82. McCloskey, W. B. and Holt, J. S. 1991. Effect of growth temperature on biomass production of nearly isonuclear triazine-resistant and -susceptible common groundsel (Senecio vulgaris L.). Plant, Cell and Environment 14: 699705.Google Scholar
83. Merrell, D. J. 1968. The evolutionary role of dominant genes. Genet. Lect. (Oregon) 1: 167194.Google Scholar
84. Merrell, D. J. 1981. Ecological Genetics. University of Minnesota Press, Minneapolis. 500 pp.Google Scholar
85. Mortimer, A. M., Ulf-Hansen, P. F., and Putwain, P. D. 1992. Modelling herbicide resistance—a study of ecological fitness. Pages 283306 in Denholm, I., Devonshire, A. L., and Hollomons, D. W., eds. Achievements and Developments in Combating Pesticide Resistance. Elsevier Science Publishers, Essex.Google Scholar
86. Mulugeta, D., Fay, P. K., and Dyer, W. E. 1992. The role of pollen in the spread of sulfonylurea resistant Kochia scoparia L. (Schrad.). Weed Sci. Soc. Amer. Abstr. 32: 16.Google Scholar
87. Murphy, T. R., Gossett, B. J., and Toler, J. E. 1986. Growth and development of dinitroaniline-susceptible and -resistant goosegrass (Eleusine indica) biotypes under noncompetitive conditions. Weed Sci. 34: 704710.CrossRefGoogle Scholar
88. Murray, B. G., Morrison, I. N., and Brûlé-Babel, A. L. 1995. Inheritance of acetyl-coA carboxylase inhibitor resistance in wild oat (Avena fatua). Weed Sci. 43: 233238.Google Scholar
89. Plewa, M. J., Wagner, E. D., Gentile, G. J., and Gentile, J. M. 1984. An evaluation of the genotoxic properties of herbicides following plant and animal activation. Mutation Res. 136: 233245.CrossRefGoogle ScholarPubMed
90. Powles, S. B. and Howat, P. D. 1990. Herbicide-resistant weeds in Australia. Weed Technol. 4: 178185.Google Scholar
91. Price, S. C., Allard, R. W., Hill, J. E., and Naylor, J. 1985. Associations between discrete genetic loci and genetic variability for herbicide reaction in plant populations. Weed Sci. 33: 650653.Google Scholar
92. Price, S. C., Hill, J. E., and Allard, R. W. 1983. Genetic variability for herbicide reaction in plant populations. Weed Sci. 31: 652657.Google Scholar
93. Radosevich, S. R. and Holt, J. S. 1982. Physiological responses and fitness of susceptible and resistant weed biotypes to triazine herbicides. Pages 163183 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley & Sons, New York.Google Scholar
94. Roush, M. L., Radosevich, S. R., and Maxwell, B. D. 1990. Future outlook for herbicide-resistance research. Weed Technol. 4: 208214.Google Scholar
95. Ryan, G. F. 1970. Resistance of common groundsel to simazine and atrazine. Weed Sci. 18: 614616.Google Scholar
96. Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 83139 in Powles, S. B. and Holtum, J. A. M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Lewis Publ. Boca Raton. Fl.Google Scholar
97. Sagar, R. 1974. Patterns of inheritance of organelle genomes: molecular basis and evolutionary significance. Pages 252267 in Birky, C. W. Jr., Perlman, P. S., and Byers, T. J., eds. Genetics and Biogenesis of Mitochondria and Chloroplasts. Ohio State University Press, Columbus.Google Scholar
98. Schönfeld, M., Yaacoby, T., Michael, O., and Rubin, B. 1987. Triazine resistance without reduced vigor in Phalaris paradoxa . Plant Physiol. 83: 329333.Google Scholar
99. Schooler, A. B., Bell, A. R., and Nalewaja, J. D. 1972. Inheritance of siduron tolerance in foxtail barley. Weed Sci. 20: 167169.Google Scholar
100. Scott, K. R. and Putwain, P. D. 1981. Maternal inheritance of simazine resistance in a population of Senecio vulgaris . Weed Res. 21: 137140.Google Scholar
101. Shaaltiel, Y., Chua, N.-H., Gepstein, S., and Gressel, J. 1988. Dominant pleiotropy controls enzymes co-segregating with paraquat resistance in Conyza bonariensis . Theor. Appl. Genet. 75: 850856.Google Scholar
102. Slatkin, M. 1985. Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16: 393430.Google Scholar
103. Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 5365.Google Scholar
104. Slatkin, M. 1987. Gene flow and the genetic structure of natural populations. Science 234: 787792.Google Scholar
105. Solymosi, P., Kostyal, Z., and Lehoczki, E. 1986. Characterization of intermediate biotypes in atrazine-susccptible populations of Chenopodium polyspermum L. and Amaranthus bouchonii Thell. in Hungary. Plant Sci. 47: 173179.Google Scholar
106. Somody, C. N., Nalewaja, J. D. and Miller, S. D. 1984. Wild oat (Avena fatua) and Avena sterilis morphological characteristics and response to herbicides. Weed Sci. 32: 353359.CrossRefGoogle Scholar
107. Souza Machado, V. and Bandeen, J. D. 1982. Genetic analysis of chloroplast atrazine resistance in Brassica campestris-cytoplasmic inheritance. Weed Sci. 30: 281285.Google Scholar
108. Stallings, G. P., Thill, D. C. and Mallory-Smith, C. A. 1993. Pollen-mediated gene flow of sulfonylurea-resistant kochia (Kochia scoparia (L.) Schrad.). Weed Sci. Soc. Amer. Abstr. 33: 60.Google Scholar
109. Stowe, A. E. and Holt, J. S. 1988. Comparison of triazine-resistant and -susceptible biotypes of Senecio vulgaris and their F1 hybrids. Plant Physiol. 87: 183189.CrossRefGoogle Scholar
110. Strickberger, M. W. 1985. Genetics. 3rd Edition. Macmillan Publishing Co., New York. 842 pp.Google Scholar
111. Thai, K. M., Jana, S., and Naylor, J. M. 1985. Variability for response to herbicides in wild oat (Avena fatua) populations. Weed Sci. 33: 829835.Google Scholar
112. Thompson, C. R., Thill, D. C., and Shafii, B. 1992. Germination characteristics of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42: 5056.Google Scholar
113. Thompson, C. R., Thill, D. C., and Shafii, B. 1994. Growth and competitiveness of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42: 172179.Google Scholar
114. Tilney-Bassett, R. A. E. 1974. Genetics of variegated plants. Pages 268308 in Birky, C. W. Jr., Perlman, P. S., and Byers, T. J., eds. Genetics and Biogenesis of Mitochondria and Chloroplasts. Ohio State University Press. Columbus.Google Scholar
115. Warwick, S. I. 1980. Differential growth between and within triazine-resistant and triazine-susceptible biotypes of Senecio vulgaris L. Weed Res. 20: 299303.Google Scholar
116. Warwick, S. I. 1991. Herbicide resistance in weedy plants: physiology and population biology. Annu. Rev. Ecol. Syst. 22: 95114.Google Scholar
117. Warwick, S. J. and Black, L. 1980. Uniparental inheritance of atrazine resistance in Chenopodium album L. Can, J. Plant Sci. 60: 751753.CrossRefGoogle Scholar
118. Warwick, S. I. and Black, L. 1981. The relative competitiveness of atrazine susceptible and resistant populations of Chenopodiun album and C. strictum . Can. J. Bot. 59: 689693.Google Scholar
119. Warwick, S. I. and Marriage, P. B. 1982. Geographical variation in populations of Chenopodiun album resistant and susceptible to atrazine. 1. Between and within-population variation in growth response to atrazine. Can. J. Bot. 60: 483493.Google Scholar
120. Weaver, S. E. and Warwick, S. I. 1982. Competitive relationships between atrazine resistant and susceptible populations of Amaranthus retroflexus and A. powelli from southern Ontario. New Phytol. 92: 131139.Google Scholar
121. Weaver, S. E., Warwick, S. I., and Thompson, B. K. 1982. Comparative growth and atrazine response of resistant and susceptible populations of Amaranthus from southern Ontario, J. Appl. Ecol. 19: 611620.Google Scholar
122. Wright, S. 1977. Evolution and the Genetics of Populations. Vol. 3. Experimental Results and Evolutionary Deductions. Univ. of Chicago Press. Chicago. 613 pp.Google Scholar
123. Yamasue, Y., Kamiyama, K., Hanioka, Y., and Kusanagi, T. 1992. Paraquat resistance and its inheritance in seed germination of the foliar-resistant biotypes of Erigeron canadensis L. and E. sumatrensis Retz. Pestic. Biochem. Physiol. 44: 2127.CrossRefGoogle Scholar