Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T05:45:26.360Z Has data issue: false hasContentIssue false

Eucalyptus globulus Leaves Incorporated as Green Manure for Weed Control in Maize

Published online by Cambridge University Press:  20 January 2017

Carolina G. Puig
Affiliation:
Department of Plant Biology and Soil Science, laboratory of Plant Ecophysiology, University of Vigo. Campus As Lagoas-Marcosende, 36310-Vigo, Spain
Lorena Álvarez-Iglesias
Affiliation:
Department of Plant Biology and Soil Science, laboratory of Plant Ecophysiology, University of Vigo. Campus As Lagoas-Marcosende, 36310-Vigo, Spain
Manuel J. Reigosa
Affiliation:
Department of Plant Biology and Soil Science, laboratory of Plant Ecophysiology, University of Vigo. Campus As Lagoas-Marcosende, 36310-Vigo, Spain
Nuria Pedrol*
Affiliation:
Department of Plant Biology and Soil Science, laboratory of Plant Ecophysiology, University of Vigo. Campus As Lagoas-Marcosende, 36310-Vigo, Spain
*
Corresponding author's E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The use of eucalyptus leaves for weed control in maize-based cropping systems is proposed. Aqueous extracts of eucalyptus are known to exert phytotoxicity on many weeds and crops, but there is also experimental evidence of the relative tolerance of maize. Based on in vitro dose-response bioassays of leaf aqueous extracts, we conducted greenhouse pot experiments testing incorporated eucalyptus leaves as green manure. The phytotoxic effects were tested on the germination, establishment and growth of maize and some representative accompanying weeds, in comparison to the PRE herbicide metolachlor. Eucalyptus fresh leaves incorporated into the soil as green manure at 1 and 2% w/w reduced the emergence of the dicot weed species redroot pigweed and black nightshade. After one month of incorporation, both doses reduced aerial biomass >94% two monocot weed species (barnyardgrass + large crabgrass) with respect to the eucalyptus-free pots, and around 80% for the small seeded dicots. Although the aerial biomass of maize was reduced by 33%, the final relative yield of maize biomass with respect to the untreated control increased by 37%. On the assessment of the temporal phytotoxic effects, the reduction of aerial biomass in maize could be overcome by adopting a relay-planting of maize after 12 to 15 days from eucalyptus incorporation. Our results constitute evidence that the incorporation of E. globulus residues to soil could be a feasible practice to reduce the reliance on synthetic herbicides in maize-based cropping systems.

Type
Weed Management
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

References

Literature Cited

An, M., Johnson, I. R., and Lovett, J. V. 2002. Mathematical modeling of residue allelopathy: the effects of intrinsic and extrinsic factors. Plant Soil. 246:1122.Google Scholar
An, M., Pratley, J. E., and Haig, T. 1997. Phytotoxicity of vulpia residues: I. Investigation of aqueous extracts. J. Chem. Ecol. 23:19791995.Google Scholar
Babu, R. C. and Kandasamy, O. S. 1997. Allelopathic effect of Eucalyptus globulus Labill. on Cyperus rotundus L. and Cynodon dactylon L. Pers. J. Agron. Crop Sci. 179:123126.Google Scholar
Bagavathy, S. and Xavier, G. S. A. 2007. Effects of aqueous extract of Eucalyptus globulus on germination and seedling growth of sorghum. Allelop. J. 20:395402.Google Scholar
Batish, D. R., Setia, N., Singh, H. P., and Kohli, R. K. 2004. Phytotoxicity of lemon-scented eucalypt oil and its potential use as a bioherbicide. Crop Prot. 23:12091214.Google Scholar
Batish, D. R., Singh, H. P., Kohli, R. K., and Kaur, S. 2008. Eucalyptus essential oil as a natural pesticide. Forest Ecol. Manag. 256:21662174.Google Scholar
Belz, R. G., Cedergreen, N., and Duke, S. O. 2011. Herbicide hormesis - can it be useful in crop production? Weed Res. 51:321332.Google Scholar
Bhowmik, P. C. 2003. Inderjit. 2003. Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot. 22:661671.Google Scholar
Böger, P. 2003. Mode of action for chloroacetamides and functionally related compounds. J. Pestic. Sci. 28:324329.Google Scholar
Campiglia, E., Radicetti, E., and Mancinelli, R. 2012. Weed control strategies and yield response in a pepper crop (Capsicum annuum L.) mulched with hairy vetch (Vicia villosa Roth.) and oat (Avena sativa L.) residues. Crop Prot. 33:6573.Google Scholar
Cherr, C. M., Scholberg, J. M. S., and McSorley, R. 2006. Green manure approaches to crop production: A synthesis. Agron. J. 98:302319.Google Scholar
De Albuquerque, M. B., Dos Santos, R. C., Lima, L. M., Melo Filho, P. D. A., Nogueira, R. J. M. C., Da Câmara, –C. A. G., and Ramos, A. D. R. 2011. Allelopathy, an alternative tool to improve cropping systems. A review. Agron. Sustain. Dev. 31:379395.Google Scholar
Dhima, K. V., Vasilakoglou, I. B., Eleftherohorinos, I. G., and Lithourgidis, A. S. 2006. Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Sci. 46:345352.Google Scholar
Dhima, K. V., Vasilakoglou, I. B., Gatsis, Th. D., Panou-Philotheou, E., and Eleftherohorinos, I. G. 2009. Effects of aromatic plants incorporated as green manure on weed and maize development. Field Crop Res. 110:235241.Google Scholar
Djanaguiraman, M., Ravishankar, P., and Bangarusamy, U. 2002. Effect of Eucalyptus globulus on greengram, blackgram and cowpea. Allelop. J. 10:157162.Google Scholar
Duke, S. O. 2010. Allelopathy: current status of research and future of the discipline: A commentary. Allelop. J. 25:1730.Google Scholar
Duke, S. O., Dayan, F. E., Rimando, A. M., Schrader, K. K., Aliotta, G., Oliva, A., and Romagni, J. G. 2002. Chemicals from nature for weed management. Weed Sci. 50:138151.Google Scholar
El-Khawas, S. A. and Shehata, M. M. 2005. The allelopathic potentialities of Acacia nilotica and Eucalyptus rostrata on monocot (Zea mays L.) and dicot (Phaseolus vulgaris L.) plants. Biotechnology 4:2334.Google Scholar
El-Rokiek, K. G. and Eid, R. A. 2009. Allelopathic effects of Eucalyptus citriodora on Amaryllis and associated grassy weed. Planta Daninha 27(Special Issue):887899.Google Scholar
El-Rokiek, K. G., Messiha, N. K., El-Masry, R. R., and Saad El-Din, S. A. 2011. Evaluating the leaf residues of Eucalyptus globulus and Mangifera indica on growth of Cynodon dactylon and Echinochloa colonum . J. Appl. Sci. Res. 7:17931799.Google Scholar
Espinosa-Garcia, F. J., Martínez-Hernández, E., and Quiroz-Flores, A. 2008. Allelopathic potential of Eucalyptus spp plantations on germination and early growth of annual crops. Allelop. J. 21:2538.Google Scholar
European Parliament. 2009. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0071:0086:EN:PDF. Accesed: March 20, 2011.Google Scholar
FAO. 1995. Eucalyptus oil. Chapter 5. In: Flavour and Fragances of Plant Origin. Rome, Italy Food and Agriculture Organization of the United Nations, http://www.fao.org/docrep/V5350E/V5350e07.htm. Accessed: November 10, 2010.Google Scholar
Fujii, Y. 2001. Screening and future exploitation of allelopathic plants as alternative herbicides with special reference to hairy vetch. Pages 257275 in Kohli, R. K., Singh, H. P., and Batish, D. R., eds. Allelopathy in Agroecosystems. Binghamton, NY Food Products Press.Google Scholar
Gallandt, E. R. 2006. How can we target the weed seedbank? Weed Sci. 54:588596.Google Scholar
Grosso, C., Coelho, J. A., Urieta, J. S., Palavra, A. M. F., and Barroso, J. G. 2010. Herbicidal activity of volatiles from coriander, winter savory, cotton lavender, and thyme isolated by hydrodistillation and supercritical fluid extraction. J. Agric. Food Chem. 58:1100711013.Google Scholar
Guo, L. B. and Sims, R. E. H. 2002. Eucalypt litter decomposition and nutrient release under a short rotation forest regime and effluent irrigation treatments in New Zealand: II. Internal effects. Soil Biol. Biochem. 34:913922.Google Scholar
Khanh, T. D., Chung, M. I., Xuan, T. D., and Tawata, S. 2005. The exploitation of crop allelopathy in sustainable agricultural production. J. Agron. Crop Sci. 191:172184.Google Scholar
Kobayashi, K. 2004. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol. Manage. 4:17.Google Scholar
Kruidhof, H. M., Bastiaans, L., and Kropff, M. J. 2008. Ecological weed management by cover cropping: effects on weed growth in autumn and weed establishment in spring. Weed Res. 48:492502.Google Scholar
Kruidhof, H. M., Bastiaans, L., and Kropff, M. J. 2009. Cover crop residue management for optimizing weed control. Plant Soil. 318:169184.Google Scholar
Lisanework, N. and Michelsen, A. 1993. Allelopathy in agroforestry systems: the effects of leaf extracts of Cupressus lusitanica and three Eucalyptus spp. on four Ethiopian crops. Agroforest. Syst. 21:6374.Google Scholar
Madeira, A. C., Madeira, M., Fabião, A., Marques, P., and Carneiro, M. 2010. Impact of harvest residues, fertilisers and N-fixing plants on growth and nutritional status of young Eucalyptus globulus plantations, under Mediterranean conditions. Eur. J. Forest. Res. 129:591601.Google Scholar
MARM. 2006. Forestry statistics. Ministry of Environmental, Rural, and Marine Affairs. Madrid, Spain. http://www.marm.es/es/biodiversidad/temas/montes-y-politica-forestal/estadisticas-forestales/default.aspx [In Spanish]. Accessed: November 10, 2010.Google Scholar
Mayer, A. M., and Poljakoff-Mayber, A., eds. 1963. The Germination of Seeds Pergamon Press, Oxford. 244 p.Google Scholar
Meissle, M., Mouron, P., Musa, T., Bigler, F., Pons, X., Vasileiadis, V. P., Otto, S., Antichi, D., Kiss, J., Pálinkás, Z., Dorner, Z., Van Der Weide, R., Groten, J., Czembor, E., Adamczyk, J., Thibord, J. B., Melander, B., Nielsen, G. C., Poulsen, R. T., Zimmermann, O., Verschwele, A., and Oldenburg, E. 2010. Pests, pesticide use and alternative options in European maize production: current status and future prospects. J. Appl. Entomol. 134:357375.Google Scholar
Miller, T. W. 2007. Natural herbicides and amendments for organic weed control. ACS Symposium Series 947:174185.Google Scholar
Moore, M. J., Gillespie, T. J., and Swanton, C. J. 1994. Effect of cover crop mulches on weed emergence, weed biomass, and soybean (Glycine max) development. Weed Technol. 8:512518.Google Scholar
Moradshahi, A., Ghadiri, H., and Ebrahimikia, F. 2003. Allelopathic effects of crude volatile oil and aqueous extracts of Eucalyptus camaldulensis Dehnh. leaves on crops and weeds. Allelop. J. 12:189195.Google Scholar
Mubarak, A. R., Daldoum, D. M. A., and Sayed, A. M. 2009. Note on the influence of leaf extracts of Nine Trees on seed germination, radicle and hypocotyl elongation of maize and sorghum. Int. J. Agric. Biol. 11:340342.Google Scholar
Padhy, B., Patnaik, P. K., and Tripathy, A. K. 2000. Allelopathic potential of Eucalyptus leaf litter leachates on germination and seedling growth of fingermillet. Allelop. J. 7:6978.Google Scholar
Pawar, K. B. and Chavan, P. D. 2007. Influence of leaf leachates of soybean, Moringa, Parthenium and Eucalyptus on carbohydrate metabolism in germinating seeds of Sorghum bicolor (L.) Moench. Allelop. J. 19:543548.Google Scholar
Sasikumar, K., Vijayalakshmi, C., and Parthiban, K. T. 2002. Allelopathic effects of Eucalyptus on blackgram (Phaseolus mungo L.). Allelop. J. 9:205214.Google Scholar
Souto, X. C., González, L., and Reigosa, M. J. 1994. Comparative-analysis of allelopathic effects produced by 4 forestry species during decomposition process in their soils in Galicia (NW Spain). J. Chem. Ecol. 20:30053015.Google Scholar
Turnbull, J. W. 1999. Eucalypt plantations. New Forest. 17:3752.Google Scholar
Vasileaidis, V. P., Sattin, M., Otto, S., Veres, A., Pálinkás, Z., Ban, R., Pons, X., Kudsk, P., van der Weide, R., Czembor, E., Moonen, A. C., and Kiss, J. 2011. Crop protection in European maize-based cropping systems: Current practices and recommendations for innovative Integrated Pest Management. Agr. Syst. 104:533540.Google Scholar
Viera, M. and Schumacher, M. V. 2011. Biomass in monospecific and mixed stands of eucalyptus and black wattle and corn in an agroforestry system. Cerne 17:259265.Google Scholar
Willis, R. J. 1991. Research on allelopathy on Eucalyptus in India and Pakistan. Commonw. For. Rev. 70:279289.Google Scholar
Wuest, S. B., Albrecht, S. L., and Skirvin, K. W. 2000. Crop residue position and interference with wheat seedling development. Soil Till. Res. 55:175182.Google Scholar
Xuan, T. D., Shinkichi, T., Khanh, T. D., and Min, C. I. 2005. Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview. Crop Prot. 24:197206.Google Scholar
Yamagushi, M. Q., Gusman, G. S., and Vestena, S. 2011. Allelopathic effect of aqueous extracts of Eucalyptus globulus Labill. and of Casearia sylvestris Sw. on crops. Semina: Ciencias Agrarias 32:13611374.Google Scholar
Zhang, J., An, M., Wu, H., Stanton, R., and Lemerle, D. 2010. Chemistry and bioactivity of Eucalyptus essential oils. Allelop. J. 25:313330.Google Scholar
Zhang, C. and Fu, S. 2009. Allelopathic effects of eucalyptus and the establishment of mixed stands of eucalyptus and native species. Forest Ecol. Manag. 258:13911396.Google Scholar
Zhang, C. and Fu, S. 2010. Allelopathic effects of leaf litter and live roots exudates of Eucalyptus species on crops. Allelop. J. 26:9199.Google Scholar
Supplementary material: File

Puig et al. supplementary material

Supplemental Material

Download Puig et al. supplementary material(File)
File 18.2 KB