Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T17:36:17.504Z Has data issue: false hasContentIssue false

Eighteen years of Clearfield™ rice in Brazil: what have we learned?

Published online by Cambridge University Press:  30 July 2021

Luis Antonio de Avila*
Affiliation:
Professor, Crop Protection Department, Federal University of Pelotas (UFPel), Pelotas, Brazil
Enio Marchesan
Affiliation:
Professor, Department of Crop Science, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
Edinalvo R. Camargo
Affiliation:
Associate Professor, Crop Protection Department, Federal University of Pelotas (UFPel), Pelotas, Brazil
Aldo Merotto Jr.
Affiliation:
Associate Professor, Crop Science Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
André da Rosa Ulguim
Affiliation:
Associate Professor, Crop Protection Department, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
José Alberto Noldin
Affiliation:
Senior Researcher, Epagri (Institution for Agricultural Research and Extension of Santa Catarina State), Itajaí Experimental Station, Itajaí, Brazil
André Andres
Affiliation:
Senior Researcher, Brazilian Agricultural Research Corporation (Embrapa), Pelotas, Brazil
Carlos H. P. Mariot
Affiliation:
Researcher–Technical Consultant, Rio Grande do Sul Rice Institute (IRGA), Cachoeirinha, Brazil
Dirceu Agostinetto
Affiliation:
Professor, Crop Protection Department, Federal University of Pelotas (UFPel), Pelotas, Brazil
Sylvio H. B. Dornelles
Affiliation:
Associate Professor, Department of Biology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
Catarine Markus
Affiliation:
Assistant Professor, Crop Science Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
*
Author for correspondence: Luis Antonio de Avila, Departamento de Fitossanidade, Universidade Federal de Pelotas, Campus Universitário s/n, CP 354, 96.160-000, Pelotas, RS, Brazil. (Email: [email protected])

Abstract

Clearfield™ (CL) rice (Oryza sativa L.) is a weedy rice (Oryza spp.; synonym = red rice) control tool that has been used in Brazil since 2003. This system includes the use of an imidazolinone (IMI)-tolerant cultivar and the application of IMI herbicides. In this review article, Brazilian weed scientists evaluate the challenges and lessons learned over 18 yr of CL use. CL system benefits include selective weedy rice control, better crop establishment during the most advantageous period of the year, and more efficient fertilizer use. In Rio Grande do Sul state, the CL system, in conjunction with other improvements, has contributed to rice grain yield gains from 5,500 kg ha−1 before 2002 to around 8,400 kg ha−1 currently. In contrast, the main problem that has arisen over this period is the rapid evolution of IMI-resistant weedy rice, caused by gene flow from CL rice cultivars. The off-label use (rate and continuous use) of IMI herbicides has contributed to the evolution of resistance in Echinochloa spp. and other weeds. IMI herbicide carryover has also affected susceptible crops grown after CL rice. Crop rotation with soybean [Glycine max (L.) Merr.] is increasing, ensuring system sustainability. The importance of minimum tillage has also become apparent. Such cultivation includes applying nonselective herbicides before sowing or just before crop emergence (at the spiking stage to eliminate as much weedy rice as possible and other weeds at an early growth stage). It also includes the use of certified seeds free of weedy rice, following label instructions for IMI herbicides, applying the herbicide PRE followed by POST, and complementary weedy rice management practices, such as roguing of surviving weedy rice plants.

Type
Special Issue Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of the Weed Science Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Nilda Roma-Burgos, University of Arkansas

References

Agostinetto, D, Fleck, NG, Rizzardi, MA, Merotto, A Jr, Vidal, RA (2001) Red rice: ecophysiology and strategies of control. Cienc Rural 31:341349. Original in PortugueseCrossRefGoogle Scholar
Agostinetto, D, Magro, TD, Vargas, L, Noldin, JA (2011) Cyperus difformis L. resistance to pyrazosulfuron-ethyl herbicide and option control. Semin Ciencias Agrar 32:839848 CrossRefGoogle Scholar
Alister, C, Kogan, M (2005) Efficacy of imidazolinone herbicides applied to imidazolinone-resistant maize and their carryover effect on rotational crops. Crop Prot 24:375379 CrossRefGoogle Scholar
Andres, A, Concenço, G, Theisen, G, Galon, L, Tesio, F (2012) Management of red rice (Oryza sativa) and barnyardgrass (Echinochloa crusgalli) grown with sorghum with reduced rate of atrazine and mechanical methods. Exp Agric 48:587596 CrossRefGoogle Scholar
de, Avila LA, Andres, A, Marchesan, E, Menezes, VG (2000a) Red rice seed bank under seeding systems of flooded rice. Cienc Rural 30:773777. Original in PortugueseGoogle Scholar
Avila, LA, Marchesan, E, Machado SL de O, Silva RP da (2000b) Red rice seed bank evolution under different systems of lowland utilization. Planta Daninha 18:217230. Original in PortugueseCrossRefGoogle Scholar
Avila, LA, Marchezan, M, François, T, Cezimbra, DM, Souto, KM, Refatti, JP (2010a) Injury caused by the formulated mixture of the herbicide imazethapyr and imazapic in ryegrass as affected by soil moisture. Planta Daninha 28:10411046. Original in PortugueseCrossRefGoogle Scholar
Avila, LA, Noldin, JA, Mariot, CHP, Massoni, PFS, Fipke, M V., Gehrke, VR, Merotto, A, Tomita, FM, Matos, AB, Facioni, G, Vieira, EB, Rosa, ES, Santis, RP, Camargo, ER, Theisen, G, Roma-Burgos, N (2021) Status of weedy rice (Oryza sativa L.) infestation and management practices in southern Brazil. Weed Sci, doi: 10.1017/wsc.2021.24CrossRefGoogle Scholar
Avila, LA, Teló, GM, Ferreira, RB, Marchesan, E, Machado, SLO, Rossato, TL, Cezimbra, DM, Rigão, G (2010b) Non-tolerant rice production after using the ClearfieldTM rice system. Planta Daninha 28:123129. Original in PortugueseCrossRefGoogle Scholar
BASF (2020) ClearfieldTM Rice System: The Main Rice Production System. https://agriculture.basf.com/br/pt/protecao-de-cultivos-e-sementes/produtos/clearfield.html. Accessed: July 7, 2020. Original in PortugueseGoogle Scholar
Boeni, M, Anghinoni, I, Junior, S, Filho, B (2010) Soil Fertility Evolution of Rice Cultivated Soils of the Rio Grande do Sul. Cachoeirinha, RS, Brazil: IRGA. 40 p. Original in PortugueseGoogle Scholar
Bohnen, H, Da Silva, LS, Macedo, VRM, Marcolin, E (2005) Organic acids in the soil solution of a gley soil cropped with lowland rice under different systems. Rev Bras Cienc do Solo 29:475480. Original in PortugueseCrossRefGoogle Scholar
Botta, GF, Tolón-becerra, A, Lastra-bravo, X, Hidalgo, R, Rivero, D, Agnes, D (2015) Alternatives for handling rice (Oryza sativa L.) straw to favor its decomposition in direct sowing systems and their incidence on soil compaction. Geoderma 239–240:213222 CrossRefGoogle Scholar
Bundt A da, C, de, Avila LA, Agostinetto, D, Nohatto, MA, Souto, KM, Senseman, SA (2010) Depth of placement of the herbicide imazethapyr + imazapic in soil profile on non-tolerant rice injury. Cienc Rural 40:18671873. Original in PortugueseGoogle Scholar
Bundt A da, C, Avila LA de, Pinto JJ de O, Santos TT dos, Agostinetto, D, Martins, K (2013) Upward movement of the formulated mixture of imazethapyr and imazapic in response to height of the water table. Cienc Rural 43:15971604. Original in PortugueseGoogle Scholar
Bundt, ADC, Avila, LA, Agostinetto, D, Nohatto, MA, Vargas, HC (2015a) Carryover of imazethapyr + imazapic on ryegrass and non-tolerant rice as affected by thickness of soil profile. Planta Daninha 33:357364 CrossRefGoogle Scholar
Bundt, ADC, Avila, LAA, Pivetta, A, Agostinetto, D, Dick, DPP, Burauel, P (2015b) Persistence of imidazolinones in soils under a ClearfieldTM system of rice cultivation. Planta Daninha 33:341349 CrossRefGoogle Scholar
Burgos, NR, Norsworthy, JK, Scott, RC, Smith, KL (2008) Red rice (Oryza sativa) status after 5 years of imidazolinone-resistant rice technology in Arkansas. Weed Technol 22:200208 CrossRefGoogle Scholar
Busi, R, Nguyen, NK, Chauhan, BS, Vidotto, F, Tabacchi, M, Powles, SB (2017) Can herbicide safeners allow selective control of weedy rice infesting rice crops? Pest Manag Sci 73:7177 CrossRefGoogle ScholarPubMed
Carvalho PC de, F, Anghinoni, I, Moraes, A, Souza, ED, Sulc, RM, Lang, CR, Flores, JPC, Terra Lopes, ML, da Silva, JLS, Conte, O, de Lima Wesp, C, Levien, R, Fontaneli, RS, Bayer, C(2010) Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutr Cycl Agroecosyst 88:259273 CrossRefGoogle Scholar
[CONAB] Companhia Nacional do Abastecimento (2020) Mapping of paddy rice production in Brazil—CONAB. https://www.conab.gov.br/institucional/publicacoes/outras-publicacoes/item/14089-mapeamento-do-arroz-irrigado-no-brasil-2020. Accessed: September 21, 2020. Original in PortugueseGoogle Scholar
Correia S da, L, da Silva, PRF, Boeni, M, Bredemeier, C, Anghinoni, I, Menegati, GB, Maass, MB, Miozzo, LC (2018) Performance of flooded rice grown in succession to winter cover crops. Rev Bras Cienc do Solo:e0160461Google Scholar
Counce, PA, Keisling, TC, Mitchell, AJ (2000) A uniform, objective, and adaptive system for expressing rice development. Crop Sci 40:436443 CrossRefGoogle Scholar
Croughan, T, Utomo, H, Asnders, D, Braverman, M (1996) Herbicide resistant rice offers potential solution to red rice problem. Louisiana Agric 39:1012 Google Scholar
Dal Magro, T, Agostinetto, D, Pinto, JJO, Galon, L, Rezende, AL (2006) Simulated drift effects of an ALS inhibitor herbicide on yield components of flooded rice. Planta Daninha 24:805812. Original in PortugueseCrossRefGoogle Scholar
Dalazen, G, Markus, C, Merotto, A Jr (2018) Differential expression of genes associated with degradation enhancement of imazethapyr in barnyardgrass (Echinochloa crus-galli). J Agric Sci 10:389401 Google Scholar
Denardin LG de, O, Martins, AP, Carmona F de, C, Veloso, MG, Carmona, GI, Carvalho PC de, F, Anghinoni, I (2020) Integrated crop–livestock systems in paddy fields: new strategies for flooded rice nutrition. Agron J 112:22192229 CrossRefGoogle Scholar
Drescher, MS, Reinert, DJ, Denardin, JE, Gubiani, PI, Faganello, A, Silva BR da, Zardin, MC (2017) Fertilizer shanks to promote soil decompaction in the seeding operation. Cienc Rural 47:e20160026 CrossRefGoogle Scholar
Eberhardt, DS, Noldin, JA, Schiocchet, MA, Bacha, RE, Knoblauch, R, Marschalek, R, Vieira, J, Leites, A, Jezus NB de (2007) ClearfieldTM Production System for Pre-germinated Rice. Itajaí, Brazil: EPAGRI. 14 p. Original in PortugueseGoogle Scholar
Eberhardt, DS, Noldin, JA, Schiocchet, MA, Knoblauch, R, Marschalek, R, Leites, A, Guma, JM, Wickert, E, Andrade A de, Scheuermann KK, Hickel ER (2015) ClearfieldTM Production System for Pre-germinated and Dry Seeded Rice. Itajaí, Brazil: EPAGRI. 20 p. Original in PortugueseGoogle Scholar
Eberhardt, DS, Oliveira Neto, AM, Noldin, JA, Vanti, RM (2016) Barnyardgrass with multiple resistance to synthetic auxin, ALS and Accase inhibitors. Planta Daninha 34:823832 CrossRefGoogle Scholar
Flint, JL, Witt, WW (1997) Microbial degradation of imazaquin and imazethapyr. Weed Sci 45:586591 CrossRefGoogle Scholar
Fraga, DS, Agostinetto, D, Langaro, AC, Oliveira, C, Ulguim, AR, Silva, JDG (2019) Morphological and metabolic changes in soybean plants cultivated in irrigated rice rotation and as affected by imazapyr and imazapic herbicides carryover. Planta Daninha 37:110. Original in PortugueseCrossRefGoogle Scholar
Fruet B de, L, Merotto, A, Ulguim A da, R(2020) Survey of rice weed management and public and private consultant characteristics in southern Brazil. Weed Technol 34:351356 CrossRefGoogle Scholar
Gealy, DR, Mitten, DH, Rutger, JN (2003) Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa): implications for weed management. Weed Technol 17:627645 CrossRefGoogle Scholar
Gehrke, VR, Fipke, MV, de, Avila LA, Camargo, ER (2021) Understanding the opportunities to mitigate carryover of imidazolinone herbicides in lowland rice. Agriculture 11:299 CrossRefGoogle Scholar
Giacomeli, R, Marchesan, E, Sartori, GMS, Donato, G, da Silva, PRF, Kaiser, DR, Aramburu, EBB (2016) Deep tillage and furrow opener seeders for corn cropping in Planosols. Pesqui Agropecu Bras 51:261270. Original in PortugueseCrossRefGoogle Scholar
Gomes, AS, Petrini, JA, Fagundes, PRR (2004) Racional rice crop management: “Programa Marca”. Pelotas, Brazil: EMBRAPA. 203 p. Original in PortugueseGoogle Scholar
Goulart, ICGR, Borba, TCO, Menezes, VG, Merotto, A (2014) Distribution of weedy red rice (Oryza sativa) resistant to imidazolinone herbicides and its relationship to rice cultivars and wild Oryza species. Weed Sci 62:280293 CrossRefGoogle Scholar
Goulart, ICGR, Matzenbacher, FO, Merotto, A (2012) Differential germination pattern of rice cultivars resistant to imidazolinone herbicides carrying different acetolactate synthase gene mutations. Weed Res 52:224232 CrossRefGoogle Scholar
Heap, I (2021) The International Herbicide-Resistant Weed Database. www.weedscience.org. Accessed: December 2, 2020Google Scholar
Helgueira, DB, Rosa, TD, Moura, DS, Galon, L, Pinto, JJO (2019) Leaching of imidazolinones in irrigation systems in rice cultivation: sprinkling and flooding. Planta Daninha 37:e019179877 CrossRefGoogle Scholar
Henry, CG, Sartori, GMS, Gaspar, JP, Marchesan, E, Hirsh, SM, Horton, AP, Espinoza, L, James, H (2018) Deep tillage and gypsum amendments on fully, deficit irrigated, and dryland Soybean. Agron J 110:737748 CrossRefGoogle Scholar
Hicks, HL, Comont, D, Coutts, SR, Crook, L, Hull, R, Norris, K, Neve, P, Childs, DZ, Freckleton, RP (2018) The factors driving evolved herbicide resistance at a national scale. Nat Ecol Evol 2:529536 CrossRefGoogle Scholar
Kalsing, A, dos Reis Goulart ICG, Mariot CHP, Menezes VG, de Oliveira Matzenbacher F, Merotto A (2019) Spatial and temporal evolution of imidazolinone-resitant red rice in “Clearfield” rice cultivations. Pesqui Agropecu Bras 54:e00215CrossRefGoogle Scholar
Kaspary, TE, Roma-Burgos, N, Merotto, A (2020) Snorkeling strategy: tolerance to flooding in rice and potential application for weed management. Genes (Basel) 11:975 CrossRefGoogle ScholarPubMed
Kraemer, AF, Marchesan, E, Avila, LA, Machado, SLO, Grohs, M (2009) Environmental fate of imidazolinone herbicides—a review. Planta Daninha 27:629639. Original in PortugueseCrossRefGoogle Scholar
Krausz, RF, Kapusta, G (1998) Total postemergence weed control in imidazolinone-resistant corn (Zea mays). Weed Technol 12:151156 CrossRefGoogle Scholar
Langevin, SA, Clay, K, Grace, JB (1990) The incidence and effects of hybridization between cultivated rice and its related weed red rice (Oryza sativa L.). Evolution (NY) 44:10001008 CrossRefGoogle Scholar
Lopes, MCB, Rosso AF de, Lopes SIG (2003) A new cultivar developed by IRGA for the ClearfieldTM system. Pages 3–5 in Proceedings of the Brazilian Rice Congress. Itajaí, Brazil: EPAGRI. Original in PortugueseGoogle Scholar
Magalhães, AM Jr, Fagundes, PRR, Franco, D, Andres, A, Rangel, PH, Moraes, OP, Moura Neto, FM, Severo, A (2011) BRS Sinuelo CL: Rice Cultivar for the ClearfieldTM System. Pelotas, Brazil: EMBRAPA. 8 pGoogle Scholar
Marchesan, E, Dos Santos, FM, Grohs, M, De Avila, LA, Machado, SLO, Senseman, SA, Massoni, PFS, Sartori, GMS (2010) Carryover of imazethapyr and imazapic to nontolerant rice. Weed Technol 24:610 CrossRefGoogle Scholar
Marchesan, E, Massoni, PFS, Grohs, M, Villa, SCC, Avila, LA, Roso, R (2011a) Imidazolinone-tolerant rice: red rice seed bank and gene flow. Planta Daninha 29:1099–1105. Original in PortugueseCrossRefGoogle Scholar
Marchesan, E, Massoni, PFS, Villa, SCC, Grohs, M, de Avila, LA, Sartori, GMS, Bruck, RF (2011b) Productivity, injury and control of red rice in succession of irrigated rice cultivation in system Clearfield. Cienc Rural 41:1724. Original in PortugueseCrossRefGoogle Scholar
Marchesan, E, Menezes NL, de, Siqueira C do, A (2001) Control of quality of the flooded rice seeds in Santa Maria/RS. Cienc Rural 31:375379. Original in PortugueseGoogle Scholar
Marchesan, E, Oliveira, APBB, Avila, LA, Bundt, ALP (2003) Red rice seed bank dynamics affected by cattle trampling and fallow duration. Planta Daninha 21:5562. Original in PortugueseGoogle Scholar
Martini, LFD, Mezzomo, RF, de, Avila LA, Massey, JH, Marchesan, E, Zanella, R, Peixoto, SC, Refatti, JP, Cassol, GV, Marques, M (2013) Imazethapyr and imazapic runoff under continuous and intermittent irrigation of paddy rice. Agric Water Manag 125:2634 CrossRefGoogle Scholar
Martins, GN, Noldin, JA, Lucietti, D, Oliveira, DG, Haverroth, HS, Souza, LV, Fernandes, RH (2017) Rate of use and quality of rice seeds used in Santa Catarina, Brazil. Pages 187–190 in Rio Grande do Sul Rice Institute, ed. Proceedings of the Southern Brazilian Rice Congress. Cachoeirinha, RS, Brazil: IRGA. Original in PortugueseGoogle Scholar
Massoni, PFS, Marchesan, E, Grohs, M, Roso, R, Coelho, LL, MacHado, SLO, Teló, GM, Dal’Col Lúcio A (2013) Influence of post-harvest management of rice crop on red rice seed bank. Planta Daninha 31:8998. Original in PortugueseCrossRefGoogle Scholar
Matzenbacher, FO, Bortoly, ED, Kalsing, A, Merotto, A (2015) Distribution and analysis of the mechanisms of resistance of barnyardgrass (Echinochloa crus-galli) to imidazolinone and quinclorac herbicides. J Agric Sci 153:10441058 CrossRefGoogle Scholar
Menezes, VG (2003) ClearfieldTM rice system, a new alternative for red rice control. Pages 824–826 in Proceedings of the Brazilian Rice Congress. Balneário Camboriu, SC, Brazil: SOSBAI. Original in PortugueseGoogle Scholar
Menezes, VG, Macedo, VRM, Anahinoni, I (2004) Projeto 10—Crop Strategy to Enhance Yield, Competitivity and Sustainability of Rice Farms in RS. Porto Alegre, Brazil: IRGA. 32 pGoogle Scholar
Menezes, VG, Mariot, CHP, Kalsing, A, Goulart, ICGR (2009) Red rice (Oryza sativa) resistant to the herbicides imidazolinones. Planta Daninha 27:10471052. Original in PortugueseCrossRefGoogle Scholar
Menezes, VG, Mariot, CHP, Lopes, MCB, Silva PRF da, Teichmann LL, Da Silva PRF, Teichmann LL, Silva PRF da, Teichmann LL, Da Silva PRF, Teichmann LL (2001) No-tillage system of flooded rice genotypes in succession to winter cover crops. Pesqui Agropecu Bras 36:1107–1115. Original in PortugueseCrossRefGoogle Scholar
Merotto, A Jr, Goulart, ICGR, Nunes, AL, Kalsing, A, Markus, C, Menezes, VG, Wander, AE (2016) Evolutionary and social consequences of introgression of nontransgenic herbicide resistance from rice to weedy rice in Brazil. Evol Appl 9:837846 CrossRefGoogle ScholarPubMed
[MAPA] Ministry of Agriculture—Brazil (2005) Normative Instruction MAPA IN 24/2015, 16/12/2005. Establish patterns of identity and quality for production and commercialization of seeds and seedlings. https://www.defesa.agricultura.sp.gov.br/legislacoes/instrucao-normativa-24-de-16-12-2005,725.html. Original in Portuguese. Accessed: June 26, 2020Google Scholar
[MAPA] Ministry of Agriculture—Brazil (2013) Normative Instruction MAPA 45/2013-18/09/2013. Establish patterns of identity and quality for production and commercialization of seeds and seedlings. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/sementes-e-mudas/publicacoes-sementes-e-mudas/copy_of_INN45de17desetembrode2013.pdf. Original in Portuguese. Accessed: June 26, 2020Google Scholar
[MAPA] Ministry of Agriculture—Brazil (2020). National registration of cultivars. https://sistemas.agricultura.gov.br/snpc/cultivarweb/cultivares_registradas.php Accessed: June 26, 2020Google Scholar
Moraes, P V.D., Agostinetto, D, Vignolo, GK, Santos, LS, Panozzo, LE (2009) Cover crop management and weed control in corn. Planta Daninha 27:289296. Original in PortugueseCrossRefGoogle Scholar
Noldin, JA, Chandler, JM, McCauley, GN (2006) Seed longevity of red rice ecotypes buried in soil. Planta Daninha 24:611620 CrossRefGoogle Scholar
Noldin, JA, Knoblauch, R, Dal Piva, CA, Alfonso-Morel, D (1997) Rice seed quality in Santa Catarina. Pages 487–490 in Proceedings of the Brazilian Rice Congress. Itajaí, SC, Brazil: Sociedade Brasileira do Arroz Irrigado. Original in PortugueseGoogle Scholar
Noldin, JA, Yokoyama, S, Antunes, P, Luzzardi, R (2002) Outcrossing potential of glufosinate-resistant rice to red rice. Planta Daninha 20:243251. Original in PortugueseCrossRefGoogle Scholar
Norsworthy, JK, Bond, J, Scott, RC (2013) Weed management practices and needs in Arkansas and Mississippi rice. Weed Technol 27:623630 CrossRefGoogle Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3161 CrossRefGoogle Scholar
Pellerin, KJ, Webster, EP, Zhang, W, Blouin, DC (2003) Herbicide mixtures in water-seeded imidazolinone-resistant rice (Oryza sativa). Weed Technol 17:836841 CrossRefGoogle Scholar
Pellerin, KJ, Webster, EP, Zhang, W, Blouin, DC (2004) Potential use of imazethapyr mixtures in drill-seeded imidazolinone-resistant rice. Weed Technol 18:10371042 CrossRefGoogle Scholar
Peske, ST (2021) Rice seed system in Brazil. Seed News 21:1822. Original in PortugueseGoogle Scholar
Pinto, JJO, Noldin, JA, Pinho, CF, Rossi, F, Galon, L, Almeida, GF (2009a) Field persistence of (imazethapyr+imazapic) to grain sorghum (Sorghum bicolor) planted in rotation after irrigated rice. Planta Daninha 27:10151024 CrossRefGoogle Scholar
Pinto, JJO, Noldin, JA, Rosenthal, MD, Pinho, CF, Rossi, F, Machado, A, Piveta, L, Galon, L (2009b) Residual activity of (imazethapyr+imazapic) on ryegrass (Lolium multiflorum), following ClearfieldTM rice. Planta Daninha 27:609619. Original in PortugueseCrossRefGoogle Scholar
Pinto, JJO, Noldin, JA, Sousa, CP, Agostinetto, D, Piveta, L, Donida, A (2011) Residual soil activity of imazethapyr + imazapic to rice planted in rotation after Clearfield rice. Planta Daninha 29:205216. Original in PortugueseCrossRefGoogle Scholar
Piveta, LB, Noldin, JA, Roma-Burgos, N, Viana, VE, Benedetti, L, Pinto, JJO, Lamego, FP, Avila LA, de (2021) Weedy rice diversity in southern Brazil. Weed Sci, doi: 10.1017/wsc.2021.23CrossRefGoogle Scholar
Powles, SB, Gaines, TA (2016) Exploring the potential for a regulatory change to encourage diversity in herbicide use. Weed Sci 64:649654 CrossRefGoogle Scholar
Qiu, J, Jia, L, Wu, D, Weng, X, Chen, L, Sun, J, Chen, M, Mao, L, Jiang, B, Ye, C, Turra, GM, Guo, L, Ye, G, Zhu, QH, Imaizumi, T, Song, BK, Scarabel, L, Merotto, A, Olsen, KM, Fan, L (2020) Diverse genetic mechanisms underlie worldwide convergent rice feralization. Genome Biol 21:70 CrossRefGoogle ScholarPubMed
[IRGA] Rio Grandense Rice Research Institute (2020) Home page. https://irga.rs.gov.br/inicial. Accessed: June 26, 2020. Original in PortugueseGoogle Scholar
Roso, AC, Merotto, A Jr, Delatorre, CA (2010a) Bioassays for diagnosis of resistance to the herbicides imidazolinones in rice plants. Planta Daninha 28:411419. Original in PortugueseCrossRefGoogle Scholar
Roso, AC, Merotto, A Jr, Delatorre, CA, Menezes, VG (2010b) Regional scale distribution of imidazolinone herbicide-resistant alleles in red rice (Oryza sativa L.) determined through SNP markers. Field Crop Res 9:175182 CrossRefGoogle Scholar
Rouse, CE, Roma-Burgos, N, Norsworthy, JK, Tseng, TM, Starkey, CE, Scott, RC (2018) Echinochloa resistance to herbicides continues to increase in Arkansas rice fields. Weed Technol 32:3444 CrossRefGoogle Scholar
Santos, FM, Marchesan, E, Machado, SLO, Villa, SCC, Avila, LA, Massoni, PFS (2007) Controle químico de arroz-vermelho na cultura do arroz irrigado. Planta Daninha 25:405412 CrossRefGoogle Scholar
Sartori, GMS, Marchesan, E, Azevedo, CF, Coelho, LL, De Oliveira, ML (2014) Germination of irrigated rice and red rice biotypes under different temperatures. Rev Cienc Agron 45:319326. Original in PortugueseCrossRefGoogle Scholar
Schaedler, CE, Moraes, PVD, Noldin, JA (2008) Barnyardgrass resistance to quinclorac in Santa Catarina. Agropecuária Catarinense 21:6872. Original in PortugueseGoogle Scholar
Schiocchet, MA, Yokoyama, S, Eberhardt, DS, Noldin, JA, Knoblauch, R, Marchalek, R, Peruch, LAM, Bacha, RE, Ishiy, T, Alfonso-Morel, D, Vieira, J, Prado, HF, Miura, L (2007) SCS 115 CL: Paddy Rice Cultivar. Florianopolis, SC, Brazil: EPAGRI. 2 p. Original in PortugueseGoogle Scholar
Shaner, DL (2014) Herbicide Handbook. 10th ed. Champaign, IL: Weed Science Society of America. 213 p Google Scholar
Silveira, LP, Feijó, AR, Benetti, C, Refatti, JP, Fipke, M V., Camargo, ER, Ziska, LH, Avila, LA (2019) Elevated CO2 concentrations and water stress affect the ability of Italian ryegrass to remediate herbicides and enhance its allelopathic effect. Planta Daninha 37:e019179823 CrossRefGoogle Scholar
Singh, V, Burgos, N, Singh, S, Abugho, S, Earnest, L, Gbur, E, Scott, R (2016) Herbicide and winter flood treatments for controlling volunteer rice off-season. Crop Prot 79:8796 CrossRefGoogle Scholar
Singh, V, Burgos, NR, Singh, S, Gealy, DR, Gbur, EE, Caicedo, AL (2017) Impact of volunteer rice infestation on yield and grain quality of rice. Pest Manag Sci 73:604615 CrossRefGoogle ScholarPubMed
SOSBAI (2018) Rice Technical Recomendation from Research in Southern Brazil. Embrapa Clima Temperado. Pelotas, Brazil: EMBRAPA. 205 p. Original in PortugueseGoogle Scholar
Souto, KM, Jacques, RJS, de Avila, LA, Machado SL de, O, Zanella, R, Refatti, JP (2013) Biodegradation of the herbicides imazethapyr and imazapic in rhizosphere soil of six plant species. Cienc Rural 43:17901796. Original in PortugueseCrossRefGoogle Scholar
Souto, KM, Jacques, RJS, Zanella, R, Machado SL de O, Balbinot A, Avila LA de (2020) Phytostimulation of lowland soil contaminated with imidazolinone herbicides. Int J Phytoremediation 22:774–780CrossRefGoogle Scholar
Souza, MF, Neto, MDC, Marinho, MI, Saraiva, DT, Faria, AT, Silva, AA, Silva, DV (2016) Persistence of imidazolinones in soils under a Clearfield system of rice cultivation. Planta Daninha 34:589596 CrossRefGoogle Scholar
Spatt, LL, Dornelles, SHB, Sanchotene, DM, Brum, AB, Carloto, BW, Scherer, MB (2016) Low-level resistance of Cyperus iria L. to ALS-inhibiting herbicides occurring in the State of Rio Grande do Sul. Científica 44:532 CrossRefGoogle Scholar
Stępkowski, T, Banasiewicz, J, Granada, CE, Andrews, M, Passaglia, LMP (2018) Phylogeny and phylogeography of rhizobial symbionts nodulating legumes of the tribe genisteae. Genes (Basel) 163:225 Google Scholar
Su, W, Hao, H, Ding, M, Wu, R, Xu, H, Xue, F, Shen, C, Sun, L, Lu, C (2019) Adsorption and degradation of imazapic in soils under different environmental conditions. PLoS ONE 14:e0219462 CrossRefGoogle ScholarPubMed
Sudianto, E, Beng-Kah, S, Ting-Xiang, N, Saldain, NE, Scott, RC, Burgos, NR (2014) Clearfield® rice: its development, success, and key challenges on a global perspective. Crop Prot 49:4051 CrossRefGoogle Scholar
Ulguim, AR, Agostinetto, D, Vargas, L, Da Silva, JDG, Da Silva, BM, Da Rosa Westendorff, N (2017) Agronomic factors involved in low-level wild poinsettia resistance to glyphosate. Rev Bras Ciencias Agrar 12:5159 CrossRefGoogle Scholar
Ulguim, AR, Carlos, FS, Santos, RAS, Zanon, AJ, Werle, IS, Beck, M (2018) Weed phytosociological in irrigated rice under different cultivation systems and crop rotation intensity. Cienc Rural 48:e20180230 CrossRefGoogle Scholar
Ulguim, AR, Carlos, FS, Zanon, AJ, Ogoshi, C, Bexaira, KP, Silva, PRF (2019a) Is increasing doses of imazapyr + imazapic detrimental to the main crop rotation alternatives to flooded rice? Planta Daninha 37:e019217913 CrossRefGoogle Scholar
Ulguim, AR, Fruet, BL, Merotto, A, Silva, AL (2021) Status of weed control in imidazolinone-herbicide resistant rice in Rio Grande do Sul. Adv Weed Sci 39Google Scholar
Ulguim, AR, Silva, BM, Agostinetto, D, Avila Neto, RC, Zandoná, RR (2019b) Resistance mapping of the genus Cyperus in Rio Grande do Sul and selection pressure analysis. Planta Daninha 37:e019186679 CrossRefGoogle Scholar
Vedelago, A, Carmona, FC, Boeni, M, Lange, CE, Anghinoni, I (2012) Soil Fertility and Fitness for Soybean Production in Rice Production Regions of RS State. Porto Alegre, Brazil: IRGA. 46 p. Original in PortugueseGoogle Scholar
Viero, JLC, Schaedler, CE, de Azevedo, EB, Dos Santos, JVA, Scalcon R de, M, de David, DB, da Rosa, FQ (2018) Endozoochorous dispersal of seeds of weedy rice (Oryza sativa L.) and barnyardgrass (Echinochloa crus-galli L.) by cattle. Cienc Rural 48:e20170650 CrossRefGoogle Scholar
Villa, SCC, Marchesan, E, Avila, LA, Massoni, PFS, Telo, GM, Machado, SLO, Camargo, ER (2006) Imidazolinone tolerant rice: red rice control, out-crossing and herbicide carryover to non-tolerant crops. Planta Daninha 24:761768. Original in PortugueseCrossRefGoogle Scholar
Weinert, C, Carlos, F, Pacheco, D, Sousa, R, Bortowski, E, Lages, M (2019) Persian clover production in spring enhances rice yield. Proceedings of the Latin American Soil Science Congress. Montevideo, Uruguay, October 7–11, 2019. Original in PortugueseGoogle Scholar
Ziska, LH, Gealy, DR, Burgos, N, Caicedo, AL, Gressel, J, Lawton-Rauh, AL, Avila, LA, Theisen, G, Norsworthy, J, Ferrero, A, Vidotto, F, Johnson, DE, Ferreira, FG, Marchesan, E, Menezes, V, et al. (2015) Weedy (red) rice. An emerging constraint to global rice production. Adv Agron 129:181228 CrossRefGoogle Scholar