Published online by Cambridge University Press: 20 January 2017
Doveweed is a summer annual that is difficult to control in turfgrass. Photosystem II inhibitors have the potential to control doveweed, but research is limited on the efficacy of these herbicides. The objectives of this research were to evaluate (1) the differential tolerance levels of doveweed to atrazine and simazine, (2) the influence of application placement and rate on herbicide efficacy, and (3) uptake and metabolism of these herbicides in doveweed. In greenhouse experiments, the time required to injure doveweed 50% was three to five times faster for atrazine than simazine. Simazine soil or foliar + soil application reduced doveweed biomass 77% from the nontreated, but foliar-only treatments reduced biomass 51%. Application placements for atrazine equally reduced shoot biomass 96% from the nontreated. In a dose–response experiment, atrazine and simazine required ≤ 1.8 kg ha−1 and ≥ 5.1 kg ha−1 to injure doveweed 50% from 8 to 16 d after treatment (DAT), respectively. Doveweed required 79% less atrazine to reduce biomass 50% from the nontreated compared with simazine. In laboratory experiments, doveweed had similar root absorption levels of 14C-atrazine and 14C-simazine. Metabolism of both herbicides linearly increased from 1 to 7 DAT, but parent herbicide levels averaged 39 and 25% of the extracted radioactivity from 14C-atrazine and 14C-simazine, respectively. Doveweed metabolized 14C-simazine to three major metabolites, including hydroxysimazine, that each ranged from 24 to 29% of the extracted radioactivity. Hydroxyatrazine was the only major metabolite (> 10% of total 14C extracted) of 14C-atrazine. Overall, doveweed has slower metabolism of atrazine compared with simazine and is the basis for differential tolerance levels to these herbicides.
Associate Editor for this paper: Steven Seefeldt, University of Alaska at Fairbanks.