Published online by Cambridge University Press: 09 June 2017
Concern over the development of herbicide-resistant weeds has led to interest in integrated weed management systems that reduce selection pressure by utilizing mechanical and cultural weed control practices in addition to herbicides. Increasing crop seeding rate increases crop competitive ability and thus can enhance herbicide efficacy. However, it is unknown how increasing the seeding rate affects an herbicide’s efficacy. The objective of this study was to examine the interaction between increasing seeding rate and herbicide dose to control weeds. To meet this objective, the herbicide fluthiacet-methyl was applied to field-grown lentil, with Indian mustard, a proxy for wild mustard, used as a model weed. The experiment was a factorial design with four lentil seeding rates and seven herbicide rates. Overall the herbicide dose response was altered by changing lentil seeding rate. Increasing lentil seeding rate decreased the weed biomass production when herbicides were not applied. In two of the four site-years, increasing lentil seeding rate lowered the herbicide ED50, the dose required to result in a 50% reduction in weed biomass. Increasing the crop seeding rate altered the dose response to provide greater weed control at lower herbicide rates compared with normal crop seeding rates. Increased seeding rates also resulted in higher and more stable crop seed yields across a wider range of herbicide dosages. These results suggest that dose–response models can be used to evaluate the efficacy of other weed management practices that can interact with herbicide performance.
Associate Editor for this paper: Adam Davis, USDA–ARS