Published online by Cambridge University Press: 20 January 2017
Due to the looming water and labor crisis, farmers are adopting dry-seeded rice establishment, in which Chinese sprangletop is becoming a major weed. Concerns about the excessive use of herbicides in controlling Chinese sprangletop highlight the need for cultural weed management strategies. Such strategies require an adequate understanding of Chinese sprangletop response to rice plant density, nutrition, and water regime. Therefore, a greenhouse study was conducted to determine the effect of water regime (aerobic and saturated), nitrogen (N) fertilization (50 and 150 kg ha−1), and rice density (0, 160, and 640 plants m−2) on the growth and reproduction of Chinese sprangletop. Chinese sprangletop plants were taller than rice in aerobic conditions than in saturated conditions. All growth parameters (shoot, root, and inflorescence biomass and leaf area, leaf weight, and inflorescence weight ratio) of Chinese sprangletop were higher in aerobic conditions than in saturated conditions when grown without rice. However, no difference was observed for these parameters between water regimes when Chinese sprangletop was grown with rice. Chinese sprangletop growth and seed production was not affected, but rice growth was affected by N rates. Irrespective of N rate and water regime, Chinese sprangletop height (34 to 59%), tiller number (87 to 92%), leaf number (83 to 89%), shoot biomass (93 to 99%), and inflorescence biomass (95 to 99%) decreased as rice density increased from 0 to 640 plants m−2. The ability of Chinese sprangletop to grow taller and produce more plant biomass (107%) and inflorescence biomass (183%) under aerobic than saturated conditions suggests the need for integrated weed management strategies for controlling weeds under water-limited environments. Such strategies might include the use of weed-competitive and drought-tolerant rice cultivars, high seeding rates, and optimum rate of fertilizer application.