Article contents
Effect of Ammonium Sulfate on Absorption of Imazethapyr by Quackgrass (Elytrigia repens) and Maize (Zea mays) Cell Suspension Cultures
Published online by Cambridge University Press: 12 June 2017
Abstract
Field trials indicated that addition of ammonium sulfate to imazethapyr plus nonionic surfactant increased quackgrass control, especially at low imazethapyr rates. In greenhouse experiments, approximately twice as much imazethapyr was absorbed by quackgrass leaves when the herbicide was applied in combination with nonionic surfactant plus ammonium sulfate than when the herbicide was applied with nonionic surfactant alone. Black Mexican Sweet maize (BMS) suspension-cultured cells were used to evaluate the effects of ammonium sulfate and nonionic surfactant on cellular absorption of imazethapyr in the absence of a cuticular barrier. Imazethapyr absorption by BMS cells was diffusion-mediated, energy-dependent, and exhibited a pH optimum of approximately 3. Over the concentration range of 0.1 to 10.0 μM, the equilibrium concentration of imazethapyr in BMS cells was a linear function of the external concentration. Addition of ammonium sulfate to the external medium of BMS cells enhanced both the rate of imazethapyr uptake and medium acidification. There was a linear correlation between the ability of ammonium sulfate (0.5 to 10 mM) to promote medium acidification and imazethapyr uptake by BMS cells. The ammonium sulfate-induced stimulation of imazethapyr absorption in BMS cells was sensitive to plasma membrane adenosine triphosphatase inhibitors (sodium vanadate, diethylstilbestrol), the uncoupler carbonyl cyanide m-chlorophenylhydrazone, and energy metabolism inhibitors (sodium azide, nitrogen gas), demonstrating that this effect was dependent on ATP production and the functioning of the plasma membrane ATPase. It is hypothesized that cytoplasmic acidification in BMS cells due to ammonium assimilation stimulates the plasma membrane ATPase to pump protons across the plasma membrane which in turn acidifies the cell wall promoting cellular accumulation of imazethapyr by ion-trapping. Cell wall acidification due to ammonium assimilation may contribute to the ability of ammonium sulfate to enhance the efficacy of imazethapyr and other foliar-applied herbicides.
Keywords
- Type
- Physiology, Chemistry, and Biochemistry
- Information
- Copyright
- Copyright © 1993 by the Weed Science Society of America
References
Literature Cited
- 38
- Cited by