Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T19:30:23.777Z Has data issue: false hasContentIssue false

Diversity of herbicide resistance among wild oat sampled 36 yr apart

Published online by Cambridge University Press:  20 January 2017

Calvin G. Messersmith
Affiliation:
Department of Plant Sciences, North Dakota State University, Fargo, ND 58105
Michael J. Christoffers
Affiliation:
Department of Plant Sciences, North Dakota State University, Fargo, ND 58105

Abstract

The diversity of resistance among wild oat collected before and after commercial introduction of imazamethabenz, difenzoquat, diclofop, fenoxaprop-P, sethoxydim, and tralkoxydim was evaluated. Wild oat sampled in 1964 and 2000 from the Red River Valley of Minnesota and North Dakota were screened for resistance. Nearly 43% of the 1964 collections were susceptible (S) to all six herbicides, whereas only 9% were S by 2000. The frequency of resistance in 2000 compared with 1964 increased for all six herbicides, and 27 phenotype response groups to the six herbicides occurred in 2000 vs. 14 phenotype response groups for the 1964 collection. The proportion of resistant (R) plants increased faster for the aryloxyphenoxypropionate (APP) herbicides, diclofop and fenoxaprop-P, than for the cyclohexanedione (CHD) herbicides, sethoxydim and tralkoxydim. High diversity of resistance responses was observed in wild oat to acetyl-coenzyme A carboxylase–inhibitor herbicides, suggesting that there may be multiple APP herbicide– or CHD herbicide–specific resistance mechanisms in addition to those that confer cross-resistance. The trend of resistance response generally indicates that increased exposure to herbicides in wild oat may confer resistance to newly introduced but unrelated herbicides.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adkins, S. W., Loewen, M., and Symons, S. J. 1986. Variation within pure lines of wild oats (Avena fatua) in relation to degree of primary dormancy. Weed Sci 34:859864.CrossRefGoogle Scholar
Bradley, K. W., Wu, J., Hatzios, K. K., and Hagood, E. S. Jr. 2001. The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in a johnsongrass biotype. Weed Sci 49:477484.Google Scholar
Cocker, K. M., Northcroft, D. S., Coleman, J. O. D., and Moss, S. R. 2001. Resistance to ACCase-inhibiting herbicides and isoproturon in UK populations of Lolium multiflorum: mechanisms of resistance and implications for control. Pestic. Manag. Sci 57:587597.Google Scholar
Devine, M. D. 1997. Mechanisms of resistance to acetyl-coenzyme A carboxylase inhibitors: a review. Pestic. Sci 51:259264.Google Scholar
Devine, M. D., Hall, J. C., Romano, M. L., Marles, M. A. S., Thomson, L. W., and Shimabukuro, R. H. 1993. Diclofop and fenoxaprop resistance in wild oat is associated with an altered effect on the plasma membrane electrogenic potential. Pestic. Biochem. Physiol 45:167177.Google Scholar
Dexter, A. G., Nalewaja, J. D., Rasmusson, D. D., and Buchli, J. 1981. Survey of Wild Oats and Other Weeds in North Dakota 1978 and 1979. Fargo, ND: North Dakota Agricultural Experiment Station. Research Rep. 79. 80 p.Google Scholar
Dixon, D. P., Lapthorn, A., and Edwards, R. 2002. Plant glutathione transferases. Genome Biol 3:3004.13004.10.Google Scholar
Glogoza, P., McMullen, M., Zollinger, R., Thostenson, A., DeJong, T., Meyer, W., Schauer, N., and Olson, J. 2002. Pesticide Use and Pest Management Practices for Major Crops in North Dakota 2000. Fargo, ND: North Dakota State University Extension Service Bulletin ER-79. 90 p.Google Scholar
Heap, I. M., Murray, B. G., Loeppky, H. A., and Morrison, I. N. 1993. Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in wild oat (Avena fatua). Weed Sci 41:232238.Google Scholar
Holm, L. G., Plunknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds: Distribution and Biology. Honolulu, Hawaii: University Press Hawaii. pp. 105113.Google Scholar
Jacobsohn, R. and Andersen, R. N. 1968. Differential response of wild oat lines to diallate, triallate and barban. Weed Sci 16:491494.Google Scholar
Kern, A. J., Colliver, C. T., Maxwell, B. D., Fay, P. K., and Dyer, W. E. 1996. Characterization of wild oat (Avena fatua L.) populations and an inbred line with multiple herbicide resistance. Weed Sci 44:847852.Google Scholar
Kern, A. J. and Dyer, W. E. 1998. Compartmental analysis of herbicide efflux in susceptible and difenzoquat-resistant Avena fatua L. suspension cells. Pestic. Biochem. Physiol 61:2737.Google Scholar
Kern, A. J., Myers, T. M., Jasieniuk, M., Murray, B. G., Maxwell, B. D., and Dyer, W. E. 2002. Two recessive gene inheritance for triallate resistance in Avena fatua L. J. Heredity 93:4850.Google Scholar
Letouzě, A. and Gasquez, J. 2001. Inheritance of fenoxaprop-P-ethyl resistance in a blackgrass (Alopecurus myosuroides Huds.) population. Theor. Appl. Genet 103:288296.CrossRefGoogle Scholar
Menendez, J. and Prado, R. D. 1996. Diclofop-methyl cross-resistance in chlorotoluron-resistant biotype of Alopecurus myosuroides. Pestic. Biochem. Physiol 56:123133.Google Scholar
Miller, S. D., Nalewaja, J. D., and Mulder, C. E. G. 1982. Morphological and physiological variation in wild oat. Agron. J 74:771775.Google Scholar
Murray, B. G., Morrison, I. N., and Friesen, L. F. 2002. Pollen-mediated gene flow in wild oat. Weed Sci 50:321325.CrossRefGoogle Scholar
Nandula, V. K. and Messersmith, C. G. 2000. Mechanism of wild oat (Avena fatua L.) resistance to imazamethabenz-methyl. Pestic. Biochem. Physiol 68:148155.Google Scholar
O'Donovan, J. T., Sharma, M. P., Harker, K. N., Maurice, D., Baig, M. N., and Blackshaw, R. E. 1994. Wild oat (Avena fatua) populations resistant to triallate are also resistant to difenzoquat. Weed Sci 42:195199.Google Scholar
Pillmoor, J. B. and Caseley, J. C. 1987. The biochemical and physiological effects and mode of action of AC 222,293 against Alopecurus myosuroides Huds. and Avena fatua L. Pestic. Biochem. Physiol 27:340349.Google Scholar
Preston, C. and Mallory-Smith, C. A. 2001. Biochemical mechanisms, inheritance, and molecular genetics of herbicide resistance in weeds. Pages 2360 in Powles, S. B. and Shaner, D. L., eds. Herbicide Resistance and World Grains. Boca Raton, FL: CRC Press.Google Scholar
Preston, C., Tardif, F. J., Christopher, J. T., and Powles, S. B. 1996. Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pestic. Biochem. Physiol 54:123134.Google Scholar
Price, S. C., Hill, J. E., and Allard, R. W. 1983. Genetic variability for herbicide reaction in plant populations. Weed Sci 31:652657.Google Scholar
Royer, F. and Dickinson, R. 1999. Weeds of the Northern U.S. and Canada. Edmonton, AB, Canada: The University of Alberta Press. pp. 172173.Google Scholar
Schäffner, A., Messner, B., Langebartels, C., and Sandermann, H. 2002. Genes and enzymes for In-Planta phytoremediation of air, water and soil. Acta Biotechnol 22:141152.Google Scholar
Somody, C. N., Nalewaja, J. D., and Miller, S. D. 1984. Wild oat (Avena fatua) and Avena sterilis morphological characteristics and response to herbicides. Weed Sci 32:353359.Google Scholar
Thai, K. M., Jana, S., and Naylor, J. M. 1985. Variability for response to herbicides in wild oat (Avena fatua) populations. Weed Sci 33:829835.Google Scholar
Werck-Reichhart, D., Hehn, A., and Didierjean, L. 2000. Cytochromes P450 for engineering herbicide tolerance. Rev. Trends Plant Sci 5:116123.Google Scholar
Zollinger, R. K., Dahl, G. K., McMullen, M. P., Glogoza, P., Dexter, A. G., Fitterer, S. A., Waldhaus, G. E., and Ignaszewski, K. 1998. Pesticide Use and Pest Management Practices for Major Crops in North Dakota 1996. Fargo, ND: North Dakota State University Extension Rep. 43. 79 p.Google Scholar