Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T20:25:05.460Z Has data issue: false hasContentIssue false

Detection of False Broomweed (Ericameria austrotexana) by Aerial Photography

Published online by Cambridge University Press:  12 June 2017

James H. Everitt
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., P.O. Box 267, Weslaco, TX 78596; Texas Tech. Univ., Plant Stress and Water Cons. Res. Unit, Lubbock, TX 79409; and P.O. Box 748, Temple, TX 76503
Sammy J. Ingle
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., P.O. Box 267, Weslaco, TX 78596; Texas Tech. Univ., Plant Stress and Water Cons. Res. Unit, Lubbock, TX 79409; and P.O. Box 748, Temple, TX 76503
Harold W. Gausman
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., P.O. Box 267, Weslaco, TX 78596; Texas Tech. Univ., Plant Stress and Water Cons. Res. Unit, Lubbock, TX 79409; and P.O. Box 748, Temple, TX 76503
Herman S. Mayeux Jr.
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., P.O. Box 267, Weslaco, TX 78596; Texas Tech. Univ., Plant Stress and Water Cons. Res. Unit, Lubbock, TX 79409; and P.O. Box 748, Temple, TX 76503

Abstract

False broomweed (Ericameria austrotexana M.C. Johnst.) had lower near-infrared (0.75- to 0.90-μm waveband) reflectance than did six other associated rangeland species and mixed herbaceous vegetation. False broomweed's low near-infrared reflectance was attributed to its erectophile (erect-leaf) canopy structure. Other species had planophile (horizontal-leaf) or intermediate-leaf orientation. False broomweed's low near-infrared reflectance caused its image to be dark reddish-brown on color-infrared (0.50- to 0.90-μm waveband) film, compared with red or magenta images of other rangeland species. Microdensitometric measurements made on the film showed that false broomweed had significantly higher optical counts than those of associated species and mixtures of species.

Type
Weed Biology and Ecology
Copyright
Copyright © 1984 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Allen, L. H. Jr., Gausman, H. W., and Allen, W. A. 1975. Solar ultraviolet radiation in terrestrial plant communities. J. Environ. Qual. 4:285294.Google Scholar
2. Correll, D. S. and Johnston, M. C. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner, TX. 1881 pp.Google Scholar
3. Driscoll, R. S. and Coleman, M. D. 1974. Color for shrubs. Photogram. Eng. 40:451459.Google Scholar
4. Everitt, J. H., Gerbermann, A. H., Alaniz, M. A., and Bowen, R. L. 1980. Using 70-mm aerial photography to identify rangeland sites. Photogram. Eng. and Remote Sensing 46:13391348.Google Scholar
5. Gausman, H. W., Menges, R. M., Escobar, D. E., Everitt, J. H., and Bowen, R. L. 1977. Pubescence affects spectra and imagery of silverleaf sunflower (Helianthus argophyllus). Weed Sci. 25:437440.Google Scholar
6. Leamer, R. W., Meyers, V. I., and Silva, L. F. 1973. A spectroradiometer for field use. Rev. Sci. Instrum. 44:611614.Google Scholar
7. Mayeux, H. S. Jr. and Chamrad, A. D. 1982. Response of false broomweed (Ericameria austrotexana) and associated herbaceous vegetation to pelleted herbicides. Weed Sci. 30:668671.Google Scholar
8. Mayeux, H. S. Jr. and Hamilton, W. T. 1982. Response of false broomweed and associated herbaceous species to prescribed fire. Brush Management/Range Improvement Research, 1980–1981. Tex. Agric. Exp. Stn. Consol. Rep. 3968-4014. Page 8082.Google Scholar
9. Mayeux, H. S. Jr., Scifres, C. J., and Crane, R. A. 1980. Ericameria austrotexana and associated range forage responses to herbicides. Weed Sci. 28:602606.Google Scholar
10. Menges, R. M. and Gausman, H. W. 1983. Light reflectance and remote sensing detection of weeds in crops. Weed Sci. Soc. Am. Abstr. Pages 3132.Google Scholar
11. Myers, V. I. and Allen, W. A. 1968. Electrooptical remote sensing methods as nondestructive testing and measuring techniques in agriculture. Appl. Optics 7:18181838.Google Scholar
12. Steel, R. G. D. and Torrie, J. H. 1960. Principles and Procedures of Statistics. McGraw-Hill Book Co., Inc., New York. 481 pp.Google Scholar
13. Tueller, P. T. 1979. Rangeland remote sensing interpretation problems. Remote Sensing of Natural Resources Proc., Moscow, ID. Pages 450465.Google Scholar
14. Wiegand, C. L., Gausman, H. W., Cuellar, J. A., Gerbermann, A. H., and Richardson, A. J. 1974. Vegetation density deduced from ERTS-1 MSS response. Proc. 3rd Earth Resources Technological Satellite-1 Symp., Vol. 1, Section A, NASA SP-351. U.S. Govt. Printing Office, Washington, DC. Pages 93116.Google Scholar