Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T19:10:02.174Z Has data issue: false hasContentIssue false

Cross-resistance and herbicide metabolism in grass weeds in Europe: biochemical and physiological aspects

Published online by Cambridge University Press:  20 January 2017

Antonio R. Franco
Affiliation:
Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071-Córdoba, Spain

Abstract

In Europe, 18 weedy grass species had been confirmed to have biotypes with resistance to herbicides. The most frequent is that of atrazine resistance, with nine resistant biotypes found. These biotypes are mainly resistant because of changes in the D1 protein of photosystem II. All atrazine-resistant biotypes, except that of bristly foxtail, show cross-resistance to s-triazine and as-triazines. From an agriculture point of view, the most important cases of resistance are those found in blackgrass, wild oat, Italian ryegrass, rigid ryegrass, and barnyardgrass. In these species, cross- and multiple resistances were observed due to metabolism or changes in the target protein by genetic mutations or both. These biotypes are extremely difficult to control with alternative herbicides.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bulcke, R., Himme van, M., Stryckers, J., and Van Himme, M. 1988. Tolerance to amitrole in weeds in long-term experiments in fruit plantations. Pages 287295 in VIIIe Colloque International sur la Biologie, l'Ecologie et la Systematique des Mauvaises Herbes. Volume 1. Paris, France: Association National de Protection des Plantes.Google Scholar
Bulcke, R., Himme van, M., Stryckers, J., and Van Himme, M. 1989. Shifts of a survey of weed biotypes resistant to atrazine. Pages 315319 in Proceedings 1992 Congress of the Spanish Weed Society. Valencia, Spain: Spanish Weed Society.Google Scholar
Carey, V. F., Hoagland, R. E., and Talbert, R. E. 1997. Resistance mechanism of propanil-resistant barnyardgrass: II. In-vivo metabolism of the propanil molecule. Pestic. Sci 49:333338.Google Scholar
Cavan, G. and Moss, S. 1997. Herbicide resistance and gene flow in black- grass (Alopecurus myosuroides) and wild oats (Avena spp). Pages 305310 in Proceedings of the Brighton Crop Protection Conference— Weeds. Volume 1. Farnham, U.K.: British Crop Protection Council.Google Scholar
Clay, D. V. 1989. New developments in triazine and paraquat resistance and co-resistance in weed species in England. Pages 317324 in Proceedings of the Brighton Crop Protection Conference—Weeds. Volume 1. Farnham, U.K.: British Crop Protection Council.Google Scholar
Cocker, K. M., Moss, S. R., and Coleman, J. O. D. 1999. Multiple mechanisms of resistance to fenoxaprop-P-ethyl in United Kingdom and other European populations of herbicide-resistant Alopecurus myosuroides (black-grass). Pestic. Biochem. Physiol 65:189195.Google Scholar
Darmency, H. and Pernes, J. 1985. Use of wild Setaria viridis (L.) Beauv. to improve resistance in cultivated S. italica (L.) by hybridization. Weed Res 25:175179.CrossRefGoogle Scholar
De Prado, J. L., Osuna, M. D., Shimabukuro, R. H., and De Prado, R. 1998. Biochemical and physiological resistance mechanisms to diclofop-methyl in Lolium rigidum . Meded. Fac. Landbouwwet 63:681689.Google Scholar
De Prado, R., De Prado, J. L., and Menéndez, J. 1997. Resistance to substituted urea herbicide in Lolium rigidum biotypes. Pestic. Biochem. Physiol 57:126136.Google Scholar
De Prado, R., Giménez-Espinosa, R., González-Gutierrez, J., Menéndez, J., Gasquez, J., and Gronwald, J. W. 2000. Resistance to acetyl CoA carboxylase inhibiting-herbicides in a Lolium multiflorum biotype from France. Weed Sci 48:311318.Google Scholar
De Prado, R., López-Martínez, N., and Gonzalez-Gutierrez, J. 1999. Identification of two mechanisms of atrazine resistance in Setaria faberi and Setaria viridis biotypes. Pestic. Biochem. Physiol 67:114124.Google Scholar
De Prado, R. and Menéndez, J. 1996. Management of herbicide-resistant grass weeds in Europe. Pages 393398 in Second International Weed Control Congress. Copenhagen, Denmark: International Weed Science Society.Google Scholar
De Prado, R. and Menéndez, J. 1997. Cross-resistance and herbicide metabolism in Alopecurus myosuroides Huds. Pages 351366 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. High Technology. Volume 37. Dordrecht, The Netherlands: Kluwer.Google Scholar
De Prado, R., Plaisence, K. L., Menéndez, J., and Gronwald, J. W. 1996. Effect of graminicide herbicides on growth and ACCase activity in a chlorotoluron-resistant biotype of Alopecurus myosuroides . Pages 5961 in Proceedings of the International Symposium on Weed and Crop Resistance to Herbicides. Córdoba, Spain: University of Córdoba.Google Scholar
De Prado, R., Romera, E., and Menéndez, J. 1995a. Atrazine detoxification in Panicum dichotomiflorum and target site Polygonum lapathifolium . Pestic. Biochem. Physiol 52:111.CrossRefGoogle Scholar
De Prado, R., Romera, E., and Menéndez, J. 1995b. Chorotoluron resistance in a Bromus tectorum L. biotype is due to enhanced detoxification processes. Pages 6264 in International Symposium on Weed and Crop Resistance to Herbicides, Córdoba, Spain. Dordrecht, The Netherlands: Kluwer.Google Scholar
De Prado, R., Romera, E., Menéndez, J., and Tena, M. 1992. Mechanism of resistance to atrazine in Setaria verticillata and Setaria faberi . Pages 457463 in IXe Colloque International sur la Biologie des Mauvais Herbes, Dijon, France: Association Francaise de Protection des Plantes.Google Scholar
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Physiology of Herbicide Action. Englewood Cliffs, NJ: PTR Prentice Hall.Google Scholar
Devine, M. D. 1997. Target-site based resistance to ACCase inhibitors. Pages 6169 in De Prado, R., Jorrín, J., and García-Torres, L. eds. Weed and Crop Resistance to Herbicides. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Donn, G., Tischer, E., Smith, J. A., and Goodman, H. M. 1984. Herbicide- resistant alfalfa cells: an example of gene amplification in plants. J. Mol. App. Genet 2:621635.Google Scholar
Durst, F., Salaün, J. P., Werck-Reichhart, D., and Zimmerlin, F. 1997. Cytochrome P450 endowed herbicide metabolism. Pages 101108 in De Prado, R., Jorrín, J., and García-Torres, L. eds. Weed and Crop Resistance to Herbicides. Dordrecht, The Netherlands: Kluwer.Google Scholar
Fuerst, E. P. and Vaughn, K. C. 1990. Mechanism of paraquat resistance. Weed Technol 4:150156.Google Scholar
Gasquez, J. 1997. Genetic of herbicides resistance within weeds. Factors of evolution, inheritance and fitness. Pages 181189 in De Prado, R., Jorrín, J., and García-Torres, L. eds. Weed and Crop Resistance to Herbicides. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Giannopolitis, C. N. and Vassiliou, G. 1989. Propanil tolerance in Echinochloa crus-galli (L.) Beauv. Trop. Pest Manag 35:67.Google Scholar
Giménez-Espinosa, R., Romera, E., Tena, M., and De Prado, R. 1996. Fate of atrazine in treated and pristine accessions of three Setaria species. Pestic. Biochem. Physiol 56:196207.Google Scholar
Gressel, J. 2002. Molecular Biology of Weed Control. New York: Taylor & Francis.Google Scholar
Gronwald, J. W. 1997. Resistance to PS II inhibitors herbicides. Pages 5359 in De Prado, R., Jorrín, J., and García-Torres, L. eds. Weed and Crop Resistance to Herbicides. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Grossmann, K. and Scheltrup, F. 1997. Selective induction of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene in transgenic plants. Plant Growth Regul 16:183188.Google Scholar
Hall, L. M., Tardif, F. J., and Powles, S. B. 1994. Mechanism of cross and multiple herbicide resistance in Alopecurus myosuroides and Lolium rigidum . Phytoprotection 75:1723.Google Scholar
Hatzios, K. K. 1997. Regulation of enzymatic systems detoxifying xenobiotics in plants: a brief overview and directions for future research. Pages 15 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. High Technology. Volume 37. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Hatzios, K. K. 2001. Mechanism of resistance to herbicides. Pages 275287 in De Prado, R. and Jorrín, J. V. eds. Uso de Herbicidas en la Agricultura del Siglo XXI. Córdoba, Spain: Servicio Publicaciones Universidad de Córdoba.Google Scholar
Heap, I. and LeBaron, H. 2001. Introduction and overview of resistance. Pages 122 in Powles, S. B. and Shaner, D. L. eds. Herbicide Resistance and World Grains. Boca Raton, FL: CRC.Google Scholar
Himme, M. Van, Stryckers, J., and Bulke, R. 1984. Herbicide-resistant biotypes, of meadow-grass, Poa annua L. and fat hen, Chenopodium album . L. Meded. Fac. Landbouwwet 40:151155.Google Scholar
Holt, J. S. and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol 4:141149.Google Scholar
Jäger, G. 1983. Herbicides. Pages 332392 in Büchel, K. H. ed. Chemistry of Pesticides. New York: J Wiley.Google Scholar
Jensen, K. I. N., Stephenson, G. R., and Hunt, L. A. 1977. Detoxification of atrazine in three gramineae subfamilies. Weed Sci 25:212220.CrossRefGoogle Scholar
Jutsum, A. R. and Graham, J. C. 1995. Managing weed resistance: the role of the agrochemical industry. Pages 783790 in Proceedings of the Brighton Crop Protection Conference—Weeds. Volume 3. Farnham, U.K.: British Crop Protection Council.Google Scholar
Lee, L. J. and Ngim, J. 2000. A first report of glyphosate-resistant (Eleusina indica) in Malaysia. Pest Manag. Sci 56:336339.Google Scholar
Letouze, A., Gasquez, J., Vaccara, D., Orlando, D., Leterrier, J., Roy, L., and Bouvard, E. 1997. Development of new reliable quick tests and state of grass-weed herbicide resistance in France. Pages 783790 in Proceedings of the Brighton Crop Protection Conference—Weeds. Volume 3. Farnham, U.K.: British Crop Protection Council.Google Scholar
López-Martínez, N., Marshall, G., and De Prado, R. 1997. Resistance of barnyardgrass (Echinochloa crus-galli) to atrazine and quinclorac. Pestic. Sci 51:171175.Google Scholar
López-Martínez, N., González, J., and De Prado, R. 2001. Propanil activity, uptake and metabolism in resistant Echinochloa spp. biotypes. Weed Res 41:187196.Google Scholar
López-Martínez, N., Shimabukuro, R. H., and De Prado, R. 1998. Effect of quinclorac on auxin-induced growth, transmembrane proton gradient and ethylene biosynthesis in Echinochloa spp. Aust. J. Plant Physiol 25:851857.Google Scholar
Marrs, K. A. 1996. The function and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol 47:127158.Google Scholar
Maxwell, B. D. and Mortimer, A. M. 1994. Selection for herbicide resistance. Pages 126 in Powles, S. B. and Holtum, J.A.M. eds. Herbicide Resistance in Plants. Boca Raton, FL: Lewis.Google Scholar
Mayor, J. P. and Maillard, A. 1997. A wind bentgrass biotype resistant to the herbicide isoproturon found in Changins. Rev. Suisse Agric 29:944.Google Scholar
Mazur, B. J. and Falco, S. C. 1989. The development of herbicide resistant crops. Annu. Rev. Plant Physiol. Plant Mol. Biol 40:441470.Google Scholar
McGonigl, B., Lau, S. C., and O'Keefe, D. P. 1997. Endogenous reactions and substrate specificity of herbicide metabolizing enzymes. Pages 918 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. High technology. Volume 37. Dordrecht, The Netherlands: Kluwer.Google Scholar
Menéndez, J. and De Prado, R. 1997. Diclofop-methyl cross-resistance in a chlorotoluron-resistant biotype of Alopecurus myosuroides . Pestic. Biochem. Physiol 56:123133.Google Scholar
Moss, S. R. 1990. Herbicide cross-resistance in slender foxtail (Alopecurus myosuroides). Weed Sci 38:492496.Google Scholar
Niemans, P. and Pestemer, W. 1984. Resistance of blackgrass (Alopecurus myosuroides) from different sites to herbicides. Nachrbl. dtsch. Pflanzenschutzd 36:113118.Google Scholar
Preston, C., Tardif, F. J., Christopher, J. T., and Powles, S. B. 1996. Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide-degrading enzymes. Pestic. Biochem. Physiol 54:123134.Google Scholar
Retzinger, E. J. Jr. and Mallory-Smith, C. A. 1997. Classification of herbicides by site of action for weed resistance management strategies. Weed Technol 11:384393.Google Scholar
Rubin, B. 1997. Herbicide resistance outside North America and Europe: causes and significance. Pages 3950 in De Prado, R., Jorrín, J., and García-Torres, L. eds. Weed and Crop Resistance to Herbicides. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Ryan, G. F. 1970. Resistance of common groundsel to simazine and atrazine. Weed Sci 18:614616.Google Scholar
Sattin, M., Berto, D., Zanin, G., and Tabacchi, M. 1999. Resistance to ALS inhibitors in weeds of rice in north-western Italy. Pages 783790 in Proceedings of the Brighton Crop Protection Conference—Weeds. Volume 3. Farnham, U.K.: British Crop Protection Council.Google Scholar
Sattin, M., Gasparetto, M. A., and Campagna, C. 2001. Situation and management of Avena spp. ludoviciana and Phalaris paradoxa resistant to ACCase inhibitors in Italy. Pages 755762 in Proceedings of the Brighton Crop Protection Conference—Weeds. Volume 3. Farnham, U.K.: British Crop Protection Council.Google Scholar
Shaner, D. L. 1995. Studies on mechanisms and genetics of resistance: their contribution to herbicide resistance management. Pages 537545 in Proceedings of the Brighton Crop Protection Conference—Weeds. Volume 2. Farnham, U.K.: British Crop Protection Council.Google Scholar
Shyr, Y. Y. J., Hepburn, A. G., and Widholm, J. M. 1992. Glyphosate selected amplification of the 5-enolpyruvylshikimate-3-phosphate synthase gene in cultured carrot cells. Mol. Gen. Genet 232:377382.Google Scholar
Skipsey, M., Andrews, C. J., Towson, J. K., Jepson, I., and Edwards, R. 1997. Substrate and thiol specificity of a stress-inducible glutathione transferase from soybean. FEBS Lett 409:370374.Google Scholar
Smeda, R. J. and Vaughn, K. C. 1997. Mechanism of resistance to dinitroaniline herbicides. Pages 8999 in De Prado, R., Jorrín, J., and García-Torres, L. eds. Weed and Crop Resistance to Herbicides. Dordrecht, The Netherlands: Kluwer.Google Scholar
Ware, G. W. 1994. Pesticide resistance. Pages 197205 in Ware, G. W. ed. The Pesticide Book. Fresno, CA: Thomson.Google Scholar
Watanabe, N., Che, F-S., Iwano, M., Takayama, S., Nakano, T., Yoshida, S., and Isogai, A. 1998. Molecular characterization of photomixotrophic tobacco cells resistant to protoporphyrinogen oxidase-inhibiting herbicides. Plant Physiol 118:751758.Google Scholar
Yu, W. T., Darmency, H., and Wang, T. Y. 1997. Dinitroaniline herbicide cross-resistance in resistant Setaria italica lines selected from interspecific cross with S. viridis . Pestic. Sci 49:277283.Google Scholar