Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T14:47:38.420Z Has data issue: false hasContentIssue false

Corn (Zea mays) acetolactate synthase sensitivity to four classes of ALS-inhibiting herbicides

Published online by Cambridge University Press:  12 June 2017

Terry R. Wright
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325
Donald Penner*
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325
*
Corresponding author.

Abstract

In vitro acetolactate synthase (ALS) activity from three commercial imidazolinone-resistant corn hybrids (ICI 8692 IT, Pioneer 3751 IR, and Ciba 4393 IMR) was compared to imidazolinone-sensitive isogenic hybrid controls for sensitivity to 11 herbicides representing four classes of ALS-inhibiting herbicide chemistry. Acetolactate synthase activity from Pioneer IR and Ciba IMR was cross-resistant to all four classes of ALS inhibitors, ranging from 48- to 5,000-fold. The ICI IT hybrid displayed only four- to eightfold resistance to the six imidazolinone herbicides and the pyrimidinylthiobenzoate herbicide, pyrithiobac, but no cross-resistance to the sulfonylurea and triazolopyrimidine sulfonanilide herbicides. The four- to eightfold enzyme resistance to imidazolinone herbicides provides whole-plant resistance; however, the sevenfold enzyme resistance to pyrithiobac was insufficient to afford whole-plant protection to a field application rate of the herbicide. A second imidazolinone-specific resistance allele, XI-12, currently under commercial development, was examined for the level of dominance at the enzyme level. In the heterozygous state, imazethapyr resistance was fivefold, compared to 250-fold in the homozygous condition, indicating XI-12 is a semidominant trait. No cross-resistance to nicosulfuron or primisulfuron was observed in the heterozygous XI-12 hybrid extracts nor to nicosulfuron in the XI-12 homozygote; however, a fivefold resistance to primisulfuron was detected in the XI-12 homozygote.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1998 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, P. C. and Georgeson, M. 1989. Herbicide-tolerant mutants of corn. Genome 31: 994999.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270: 1738117385.Google Scholar
Bradford, M. M. 1976. A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248254.Google Scholar
Bright, S.W.J., Ming, T., Evans, I. J., and MacDonald, M. J. 1992. Herbicide resistant plants. World patent WO92/08794. May 29.Google Scholar
Brown, H. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29: 263281.Google Scholar
Currie, R. S., Kwon, C. S., and Penner, D. 1995. Magnitude of imazethapyr resistance of corn (Zea mays) hybrids with altered acetolactate synthase. Weed Sci. 43: 578583.Google Scholar
D'Halluin, K. M., Bossut, M., Bonne, E., Mazur, B., Leemans, J., and Botterman, J. 1992. Transformation of sugarbeet (Beta vulgaris L.) and evaluation of herbicide resistance in transgenic plants. Bio/Technology 10: 309314.Google Scholar
Gerwick, B. C., Subramanian, M. V., and Loney-Gallant, V. I. 1990. Mechanism of action of the 1,2,4-triazolo[1,5-a]pyrimidines. Pestic. Sci. 29: 357364.Google Scholar
Green, J. M. and Ulrich, J. F. 1993. Response of corn (Zea mays L.) inbreds and hybrids to sulfonylurea herbicides. Weed Res. 41: 508516.CrossRefGoogle Scholar
Hart, S. E., Saunders, J. W., and Penner, D. 1992. Chlorsulfuron-resistant sugarbeet: cross resistance and physiological basis of resistance. Weed Sci. 40: 378383.Google Scholar
Hart, S. E., Saunders, J. W., and Penner, D. 1993. Semidominant nature of monogenic sulfonylurea herbicide resistance in sugarbeet (Beta vulgaris). Weed Sci. 41: 317324.CrossRefGoogle Scholar
Hartnett, M. E., Chui, L.-F., Falco, S. C., Knowlton, S., Mauvis, C. J., and Mazur, B. J. 1993. Molecular characterization of sulfonylurea resistant ALS genes. Pages 343353 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Oxford, Great Britain: Butterworth-Heneman.Google Scholar
Haughn, G. W. and Sommerville, C. 1986. Sulfonylurea-resistant mutants of Arabidopsis thaliana . Mol. Gen. Genet. 204: 430434.CrossRefGoogle Scholar
Mallory-Smith, C. A., Thill, D. C., Dial, M. J., and Zemetra, R. S. 1990. Inheritance of sulfonylurea herbicide resistance in Lactuca spp. Weed Technol. 4: 787790.Google Scholar
McHughen, A. 1989. Agrobacterium mediated transfer of chlorsulfuron resistance to commercial flax culrivars. Plant Cell Rep. 8:445449.Google Scholar
Mourad, G. and King, J. 1992. Effect of four classes of herbicides on growth and acetolactate-synthase activity in several variants of Arabidopsis thaliana . Planta 188: 491497.Google Scholar
Newhouse, K., Singh, B., Shaner, D., and Stidham, M. 1991. Mutations in corn (Zea mays L.) conferring resistance to imidazolinone herbicides. Theor. Appl. Genet. 83: 6570.Google Scholar
Newhouse, K. E., Smith, W. A., Starrett, M. A., Schaefer, T. J., and Singh, B. K. 1992. Tolerance to imidazolinone herbicides in wheat. Plant Physiol. 100: 882886.Google Scholar
Ray, T. B. 1984. Site of action of chlorsulfuron. Plant Physiol. 75: 827831.Google Scholar
Saunders, J. W., Acquaah, G., Renner, K. A., and Doley, W. P. 1992. Monogenic dominant sulfonylurea resistance in sugarbeet from somatic cell selection. Crop Sci. 32: 13571360.Google Scholar
Sebastian, S. A., Fader, G. M., Ulrich, J. F., Forney, D. R., and Chaleff, R. S. 1989. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci. 29: 14031408.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9: 218227.Google Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones: potential inhibitors of acetohydroxyacid synthase. Plant Physiol. 76: 545546.Google Scholar
Shaner, D. L. and Mallipudi, N. M. 1991. Mechanisms of selectivity of the imidazolinones. Pages 91102 in Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinone Herbicides. Boca Raton, FL: CRC Press.Google Scholar
Siehl, D. L., Bengston, A. S., Brockman, J. P., Butler, J. H., Kraatz, G. W., Lamoreaus, R. J., and Subramanian, M. V. 1996. Patterns of cross-tolerance to herbicides inhibiting acetohydroxyacid synthase in commercial com hybrids designed for tolerance to imidazolinones. Crop Sci. 36: 274278.Google Scholar
Singh, B. K., Stidham, M. A., and Shaner, D. L. 1988. Assay of acetohydroxyacid synthase. Anal. Biochem. 171: 173179.Google Scholar
Stidham, M. A. and Singh, B. K. 1991. Imidazolinonc–acctohydroxyacid synthase interactions. Pages 7190 in Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinone Herbicides. Boca Raton, FL: CRC Press.Google Scholar
Takahashi, S., Shigematsu, S., and Morita, A. 1991. KIH-2031, a new herbicide for cotton. Pages 5762 in Proceedings of the Brighton Crop Protection Conference. Farnham, Great Britain: Brighton Crop Protection Council.Google Scholar
Umbarger, H. E. 1978. Amino acid biosynthesis and its regulation. Annu. Rev. Biochem. 47: 533606.Google Scholar
Westerfield, W. W. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem. 161: 495502.Google Scholar