Published online by Cambridge University Press: 20 January 2017
Research was conducted to determine the efficacy of aminocyclopyrachlor in comparison to glyphosate, clopyralid, fluroxypyr, and triclopyr for silk tree (commonly known as mimosa) control. In the greenhouse, aminocyclopyrachlor was applied at 8.75, 17.5, 35, and 70 g ha−1 with and without methylated seed oil (MSO) at 0.5% v/v. Efficacy of these treatments was compared to glyphosate and triclopyr at 1,350 g ha−1, fluroxypyr at 103 g ha−1, and clopyralid at 100 g ha−1. Few differences in silk tree control were detected by 28 d after treatment (DAT), as aminocyclopyrachlor with MSO controlled silk tree 87 to 100% compared to 53 to 100% for aminocyclopyrachlor without MSO. Aminocyclopyrachlor at 35 g ha−1 provided silk tree control similar to glyphosate, triclopyr, clopyralid, and fluroxypyr regardless of adjuvant. Inclusion of MSO enhanced initial activity of aminocyclopyrachlor after application. At 7 DAT, 8.75 g ha−1 of aminocyclopyrachlor plus MSO controlled silk tree similar to aminocyclopyrachlor alone at 70 g ha−1. In laboratory studies, absorption of 14C-aminocyclopyrachlor 2 h after treatment (HAT) with MSO measured 93% compared to only 62% for 14C-aminocyclopyrachlor without MSO. By 24 HAT, absorption of 14C-aminocyclopyrachlor measured 99 and 71% for applications with and without MSO, respectively. Increased foliar absorption with MSO may explain enhanced activity observed 7 DAT in greenhouse studies, as no effects in 14C-aminocyclopyrachlor translocation due to adjuvant were observed. Responses suggest MSO increased the speed of silk tree control with aminocyclopyrachlor and may also improve rainfastness of aminocyclopyrachlor applications for control of silk tree and other woody species.