Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T19:12:47.941Z Has data issue: false hasContentIssue false

Control of parasitic witchweeds (Striga spp.) on corn (Zea mays) resistant to acetolactate synthase inhibitors

Published online by Cambridge University Press:  12 June 2017

Gordon O. Abayo
Affiliation:
Kenya Agricultural Research Institute (KARI), Kibos Experiment Station, P.O. Box 1221, Kisumu, Kenya
Terry English
Affiliation:
Oxford Plant Protection Center, USDA-APHISPPQ, Oxford, NC 27565
Robert E. Eplee
Affiliation:
Oxford Plant Protection Center, USDA-APHISPPQ, Oxford, NC 27565
Fred K. Kanampiu
Affiliation:
CIMMYT, P.O. Box 25171, Nairobi, Kenya
Joel K. Ransom
Affiliation:
CIMMYT, P.O. Box 25171, Nairobi, Kenya

Abstract

Parasitic witchweeds inflict most of their damage while still underground and attached to crop roots. Most selective translocated herbicides are detoxified by crops such as corn and thus cannot reach the attached parasites. Corn with target site resistance to acetolactate synthase (ALS)-inhibiting herbicides was tested to ascertain whether these herbicides could control witchweeds, assuming that witchweeds do not obtain amino acids from the crop. Postemergence directed sprays of 27 g ae ha−1 imazapyr 54 d after planting (DAP) delayed Striga asiatica emergence on corn in South Carolina from 3 wk (control) to 7 wk and to 11 wk when mixed with 45 g ae ha−1 AC 263 222. Treatments with up to 71 g ae ha−1 imazamox, and up to 71 g ae ha−1 AC 263 222 only delayed Striga emergence by 1 wk, and 71 g ae ha−1 imazethapyr was ineffective. ALS-inhibiting herbicides were far more effective when applied in 1-ml drenches above the seed at planting. Chlorsulfuron (10 g ai ha−1) and sulfometuron (50 g ai ha−1) were somewhat phytotoxic to Pioneer 3245IR. Rimsulfuron (30 g ai ha−1), metsulfuron (10 g ai ha−1), halosulfuron (120 g ai ha−1), and imazethapyr (140 g ae ha−1) were marginally active in Kenya, with some mature Striga hermonthica seed-bearing capsules appearing at harvest (12 wk). Imazapyr at 15 g ae ha−1 gave 70 to 95% suppression of capsule formation, whereas no capsules appeared at 30 g ae ha−1. The use of imazapyr in Kenya increased the harvest index by 17% when corn plants in Striga-infested soils were kept insect and disease free by using insecticides and fungicides. Thus, complete control can be achieved at affordable cost by farmers in subsistence conditions.

Type
Weed Management
Copyright
Copyright © 1998 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abayo, G. O., Ransom, J. K., Gressel, J., and Odhiambo, G. D. 1996. Striga hermonthica control with acetolactate synthase inhibiting herbicides seed-dressed to corn with target site resistance. Pages 762-768 in Moreno, M. T., Cubero, J. I., Berner, D., Joel, D. M., Musselman, L. J., and Parker, C., eds. Advances in Parasitic Weed Research. Cordoba: Junta de Andalucia.Google Scholar
Adu-Tutu, K. O. and Drennan, D.S.H. 1991. Effect of sulfonylurea herbicides on Striga . Pages 361-371 in Ransom, J. K., Musselman, L. J., Worsham, A. D., and Parker, C., eds. Proceedings of the 5th International Symposium of Parasitic Weed. Nairobi: CIMMYT.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270: 17,38117,385.Google Scholar
Berner, D. K., Awad, A. E., and Aigbokhan, E. I. 1994a. Potential of imazaquin seed treatment for control of Striga gesnerioides and Aleara vogelii in cowpea (Vigna ungniculata). Plant Dis. 78: 1823.Google Scholar
Berner, D. K., Cardwell, K. F., Faturoti, B. O., Ikee, F. O., and Williams, O. 1994b. Relative roles of wind, crop seeds, and cattle in dispersal of Striga spp. Plant Dis. 78: 402406.Google Scholar
Berner, D. K., Ikie, F. O., and Aigbokhan, E. J. 1995a. Some control measures for Striga hermonthica utilizing critical infection period on corn and sorghum. Pages 267-272 in Jewell, D. C., Waddington, S., Ransom, J., and Pixley, K., eds. Proceedings of the Fourth Eastern and Southern Africa Regional Corn Conference. Harare, Zimbabwe: CIMMYT.Google Scholar
Berner, D. K., Ikie, E O., and Green, J. M. 1997. ALS-inhibiting herbicide seed treatments control Striga hermonthica in ALS-modified corn (Zea mays). Weed Technol. 11: 704707.CrossRefGoogle Scholar
Berner, D. K., Kling, J. G., and Singh, B. B. 1995b. Striga research and control: a perspective from Africa. Plant Dis. 79: 652660.Google Scholar
Doggett, H. 1984. Striga—its biology and control: an overview. Pages 27-36 in Ayensu, E. S., Doggett, H., Keynes, R. D., Martin-Leferre, J., Musselman, L. J., Parker, C., and Pickering, A., eds. Striga Biology and Control. Paris: International Council Scientific Unions Press.Google Scholar
English, T. J., Eplee, R. E., and Norris, R. S. 1995. Successful witchweed eradication strategies employed in North and South Carolina. Page 193 in Proceedings of the Southern Weed Science Society. Champaign, IL: Southern Weed Science Society.Google Scholar
Eplee, R. E. and English, T. 1994. Witchweed Annual Report. Whiteville, NC: USDA-APHIS-PPQ, Plant Methods Center. 44 p.Google Scholar
Foy, C. L., Jain, R., and Jacobsohn, R. 1989. Recent approaches for chemical control of broomrape (Orobanche spp.). Rev. Weed Sci. 4: 123152.Google Scholar
Frost, H. 1995. Striga hermonthica surveys in western Kenya. Pages 145-150 in Proceedings Brighton Crop Protection Conference—Weeds. Farnham, Great Britain: BCPC.Google Scholar
Garcia-Torres, L. and Lopez-Granados, F. 1991. Control of broomrape (Orobanche crenata Forsk.) in broad bean (Vicia faba L.) with imidazolinones and other herbicides. Weed Res. 31: 227235.Google Scholar
Gressel, J. 1992. The needs for new herbicide-resistant crops. Pages 283-294 in Denholm, I., Devonshire, A. L., and Hollomon, D. W., eds. Achievements and Developments in Combating Pesticide Resistance. London: Elsevier.CrossRefGoogle Scholar
Gressel, J. 1995. The potential role of herbicide resistant crops in world agriculture. Pages 231-250 in Duke, S. O., ed. Herbicide Resistant Crops: Agricultural, Economic, Environmental, Regulatory and Technological Aspects. Boca-Raton: Lewis Publishers.Google Scholar
Gressel, J., Kleifeld, Y., and Joel, D. M. 1994. Genetic engineering can help control parasitic weed. Pages 406-418 in Pieterse, A. H., Verkleij, J.A.C., and ter Borg, S., eds. Biology and Management of Orobanche. Proceedings of the 3rd International Workshop on Orobanche and Related Striga Research. Amsterdam: Royal Tropical Institute.Google Scholar
Gressel, J., Ransom, J. K., and Hassan, E. A. 1996a. Biotech-derived herbicide-resistant crops for third world need. Ann. New York Acad. Sci. 792: 140153.Google Scholar
Gressel, J., Segel, L. E., and Ransom, J. K. 1996b. Managing the delay of evolution of herbicide resistance in parasitic weed. Int. J. Pest Manage. 42: 113129.Google Scholar
Hall, L. M. and Devine, M. D. 1993. Chlorsulfuron inhibition of phloem translocation in chlorsulfuron-resistant and susceptible Arabidopsis thaliana . Pestic. Biochem. Physiol. 45: 8190.Google Scholar
Hassan, R., Ransom, J. K., and Ojeim, J. 1995. The spatial distribution and farmers' straregies to control Sirica in corn: survey results from Kenya. Pages 250-254 in Jewell, D. C., Waddington, S., Ransom, J., and Pixley, K., eds. Proceedings of the Fourth Eastern and Southern Africa Regional Corn Conference. Harare, Zimbabwe: CIMMYT.Google Scholar
Joel, D. M., Kleifeld, Y., Losner-Goshen, D., Herzlinger, G., and Gressel, J. 1995. Transgenic crops against parasites. Nature 374: 220221.CrossRefGoogle Scholar
Joel, D. M., Portnoy, V., Gressel, J., and Amsellem, Z. 1997. Seed stock disinfection and broomrape control by herbicide treatments of herbicide-resistant crop seed. Weed Sci. Soc. Am. Abstr. 37: 110.Google Scholar
Jurado-Esposito, M., Castejon-Munoz, M., and Garcia-Torres, L. 1996. Broomrape (Orobanche crenata) control with imazethapyr applied to pea (Pisum sativum) seed. Weed Technol. 10: 774780.Google Scholar
Langston, M. A. and English, T. J., 1990. Vegetative control of witchweed and herbicides evaluation of techniques. Pages 108-113 in Sands, P. E., Eplee, R. E., and Westbrook, R. G., eds. Witchweed Research and Control in the United States. Champaign, IL.: Weed Science Society of America.Google Scholar
Newhouse, K., Singh, B., Shaner, D., and Stidham, M. 1991. Mutations in corn (Zea mays L.) conferring resistance to imidazolinone herbicides. Theor. Appl. Genet. 83: 6570.Google Scholar
Odhiambo, G. D. and Ransom, J. K. 1993. Effect of dicamba on the control of Striga hermonthica in corn in western Kenya. African Crop Sci. J. 1: 105110.Google Scholar
Parker, C. and Riches, C. R. 1993. Parasitic Weeds of the World: Biology and Control. Wallingford, Great Britain: CAB International. 332 p.Google Scholar
Press, M. C. 1995. Carbon and nitrogen relations. Pages 103-124 in Press, M. C. and Graves, J. D., eds. Parasitic Plants. London: Chapman and Hall.Google Scholar
Ransom, J. K., Eplee, R. E., and Norris, R. S. 1990. Striga control in corn with dicamba. Proc South. Weed Sci. Soc. 43: 55-59.Google Scholar
Ransom, J. K. and Odhiambo, G. D. 1992. Development of Striga hermonthica on corn and sorghum in western Kenya. Pages 430-433 in Proceedings of the 1st International Weed Control Congress, Melbourne: International Weed Science Society.Google Scholar
Ransom, J. K. and Odhiambo, G. D. 1995. Effect of corn (Zea mays) genotypes which vary in maturity length on Striga hermonthica parasitism. Weed Tech. 9: 6367.Google Scholar
Ransom, J. K., Odhiambo, G. D., Eplee, R. E., and Diallo, A. D. 1996. Estimates from field studies of the phytotoxic effects of Striga spp. on corn. Pages 327-333 in Moreno, M. T., Cubero, J. I., Berner, D., Joel, D. M., Musselman, L. J., and Parker, C., eds. Advances in Parasitic Weed Research. Cordoba: Junta de Andalucia.Google Scholar
Ransom, J. K., Odhiambo, G. D., and Gressel, J. 1995. Seed dressing corn with imidazolinone herbicides to control Striga hermonthca (Del.) Benth. Weed Sci. Soc. Am. Abstr. 35: 15.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate-synthase-inhibitor herbicides. Pages 80-139 in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Chelsea, MI: Lewis.Google Scholar
Siehl, D. L., Bengtson, A. S., Brockman, J. P., Butler, J. H., Kraatz, G. W., Lamoreaux, R. J., and Subramanian, M. V. 1996. Patterns of cross-tolerance to herbicides inhibiting acetohydroxyacid synthase in commercial corn hybrids designed for tolerance to imidazolinones. Crop Sci. 36: 274278.Google Scholar
Smith, M. C., Holt, J., and Webb, M. 1993. Population model of the parasitic weed Striga hermonthica (Scrophulariaceae) to investigate the potential of Smicronyx umbrinus (Coleoptera: Curculionidae) for biological control in Mali. Crop Prot. 12: 470475.Google Scholar
Surov, T., Aviv, D., Aly, R., Joel, D. M., Goldman-Guez, T., and Gressel, J. 1998. Generation of transgenic asulam-resistant potatoes to facilitate eradication of parasitic broomrapes (Orobanche spp.), with the sul gene as the selectable marker. Theor. Appl. Genet. 96: 132137.Google Scholar