Published online by Cambridge University Press: 12 June 2017
An experiment was conducted comparing wheat (Triticum aestivum L., var. Pembina) and wild buckwheat (Polygonum convolvulus L.) grown alone in pots, in full competition, and in root competition at three levels each of soil fertility and soil moisture, and harvested at three dates.
Wheat was a better competitor than wild buckwheat when considering dry matter production. With each succeeding harvest, the dry matter production and the total nitrogen and phosphorus uptake increased more for plants grown alone than in competition. Competition caused a reduction in the nitrogen and phosphorus content of wheat and wild buckwheat at the first harvest, while reductions in dry matter did not occur until the second harvest. Wheat increased in dry matter and nitrogen more than wild buckwheat with each higher level of soil moisture when grown alone but not when in competition. When grown alone or in competition, wheat increased linearly in dry matter production with increases in fertility while wild buckwheat produced maximum dry matter with medium fertility. The total nitrogen increased in wheat and wild buckwheat with each higher level of fertility, while total phosphorus increased only in wheat.
Wild buckwheat used less water than wheat to produce a gram of dry matter and per milligram of phosphorus uptake when grown alone, while the plants in competition were intermediate in water usage to plants grown alone. Wild buckwheat and wheat used similar amounts of water per unit of nitrogen uptake when grown alone and increased their water usage when grown in competition. Water efficiency for nitrogen and phosphorus uptake and dry matter production usually decreased with plant maturity and higher soil moisture, and increased with higher soil fertility.