Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T19:56:17.486Z Has data issue: false hasContentIssue false

A common ragweed population resistant to cloransulam-methyl

Published online by Cambridge University Press:  20 January 2017

William L. Patzoldt
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Anita L. Alexander
Affiliation:
Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268
Paul R. Schmitzer
Affiliation:
Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268

Abstract

A population of common ragweed not controlled by an acetolactate synthase (ALS)-inhibiting herbicide, cloransulam-methyl, was sampled near Dunkirk, IN, the first year of the herbicide's commercialization in 1998. Resistance in the Dunkirk population was confirmed by treating greenhouse-grown seedlings with cloransulam-methyl. ALS activity assays and DNA sequencing were used to identify the resistance mechanism. ALS isolated from plants of the Dunkirk population exhibited an R/S ratio for cloransulam-methyl of >5,000 when compared to ALS activity of populations from Claire City, SD, and V & J Seed Farms. R/S ratios of 4,100 and 110 were observed for two other ALS-inhibiting herbicides, chlorimuron and imazaquin, respectively. DNA sequencing revealed that an inferred leucine for tryptophan substitution at amino acid position 574 in ALS was responsible for the observed herbicide resistance. Additionally, DNA sequencing revealed significant variability among common ragweed ALS alleles. Two fragments of ALS were sequenced from three plants each of the Claire City and Dunkirk populations, totaling 688 nucleotide base pairs, of which 72 were polymorphic.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H., ed. 1994. Herbicide Handbook. 7th ed. Champaign, IL: Weed Science Society of America. pp. Champaign, IL7, 132, and 164.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270:1738117385.CrossRefGoogle ScholarPubMed
Bright, S.W.J., Ming, T., Evans, I. J., and MacDonald, M. J. 1992. Herbicide resistant plants. World Patent No. WO92/08794.Google Scholar
Dietrich, G. E. 1992. Imidazolinone resistant AHAS mutations. Eur. Pat. Appl. EP0525384A2.Google Scholar
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:1315.Google Scholar
Foes, M. J., Liu, L., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 31:514520.CrossRefGoogle Scholar
Foes, M. J., Liu, L., Vigue, G., Stoller, E. W., Wax, L. M., and Tranel, P. J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci. 47:2027.CrossRefGoogle Scholar
Gutteri, M. J., Eberlein, C. V., Mallory-Smith, C. A., and Thill, D. C. 1996. Molecular genetics of target-site resistance to acetolactate synthase inhibiting herbicides. Pages 1016 In Brown, T. M., ed. Molecular Genetics and Evolution of Pesticide Resistance. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Hattori, J., Brown, D., Mourad, G., Labbe, H., Ouellet, T., Sunohara, G., Rutledge, R., King, J., and Miki, B. 1995. An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol. Gen. Genet. 246:419425.CrossRefGoogle ScholarPubMed
Heap, I. 2000. International Survey of Herbicide Resistant Weeds. Online. Internet. Available at www.weedscience.com. Accessed November 13, 2000.Google Scholar
Hess, M., Barralis, G., Bleiholder, H., Buhr, L., Eggers, T., Hack, H., and Stauss, R. 1997. Use of the extended BBCH scale—general for the description of the growth stages of mono- and dicotyledonous weed species. Weed Res. 37:433441.CrossRefGoogle Scholar
Lancashire, P. D., Bleiholder, H., Langeluddecke, P., Stauss, R., Van Den Boom, T., Weber, E., and Witzenberger, A. 1991. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 119:561601.CrossRefGoogle Scholar
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.CrossRefGoogle Scholar
Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93:5561.CrossRefGoogle ScholarPubMed
Sathasivan, K., Haughn, G. W., and Murai, N. 1990. Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Res. 18:2188.CrossRefGoogle ScholarPubMed
Schmitzer, P. R., Eilers, R. J., and Cséke, C. 1993. Lack of cross-resistance of imazaquin-resistant Xanthium strumarium acetolactate synthase to flumetsulam and chlorimuron. Plant Physiol. 103:281283.CrossRefGoogle ScholarPubMed
Schultz, M. E., Schmitzer, P. R., Alexander, A. L., and Dorich, R. A. 2000. Identification and management of resistance to ALS-inhibiting herbicides in giant ragweed (Ambrosia trifida) and common ragweed (Ambrosia artemisiifolia). Weed Sci. Soc. Am. Abstr. 40:42.Google Scholar
Westerfeld, W. W. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem. 161:495502.CrossRefGoogle Scholar
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus sp. is conferred by a Trp to Leu mutation in ALS gene. Plant Physiol. 111:1353.Google Scholar
Wright, T. R., Bascomb, N. E., Sturner, S. F., and Penner, D. 1998. Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selection. Weed Sci. 46:1323.CrossRefGoogle Scholar