Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T05:44:19.676Z Has data issue: false hasContentIssue false

Clomazone Causes Accumulation of Sesquiterpenoids in Cotton (Gossypium hirsutum L.)

Published online by Cambridge University Press:  12 June 2017

Stephen O. Duke
Affiliation:
South. Weed Sci. Lab., Agric. Res. Serv., U.S. Dep. Agric., Stoneville, MS 38776
Rex N. Paul
Affiliation:
South. Weed Sci. Lab., Agric. Res. Serv., U.S. Dep. Agric., Stoneville, MS 38776
Josea M. Becerril
Affiliation:
South. Weed Sci. Lab., Agric. Res. Serv., U.S. Dep. Agric., Stoneville, MS 38776
John H. Schmidt
Affiliation:
Cotton Physiol, and Genet. Lab., Agric. Res. Serv., U.S. Dep. Agric., Stoneville, MS 38776

Abstract

The herbicide clomazone caused ultrastructural damage to etioplasts of cotton cotyledons. Etioplast envelopes were irregular, prothylakoids were absent or irregular, stroma density was low, and there were abnormal stromal vesicles. Further damage occurred upon exposure to light. Clomazone greatly slowed the conversion of chlorophyllide to chlorophyll in cotton, suggesting that phytol synthesis was affected. Neither synthesis of protochlorophyllide nor phototransformation of protochlorophyllide to chlorophyllide was affected by clomazone. Clomazone completely inhibited carotenoid synthesis without an accumulation of phytoene. However, the sesquiterpenoids hemigossypol and the dimeric sesquiterpenoid gossypol accumulated in greater amounts in clomazone-treated than in control tissues. These results indicate that this herbicide inhibits synthesis of terpenoids after the formation of farnesyl pyrophosphate.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bartels, P. G. 1985. Effects of herbicides on chloroplast and cellular development. Pages 6590 in Duke, S. O., ed. Weed Physiology, Vol. II. Herbicide Physiology. CRC Press, Inc., Boca Raton, FL.Google Scholar
2. Bartels, P. G. and Hyde, A. 1970. Chloroplast development in 4-chloro-S-(dimethylamino)-2-(α,α,α-trifluoro-m-tyl-3(2H)-pyridazinone (San 6706)-treated wheat seedlings. A pigment, ultrastructural, and ultracentrifugal study. Plant Physiol. 45:807810.Google Scholar
3. Becerril, J. M. and Duke, S. O. 1989. Acifluorfen effects on intermediates of chlorophyll synthesis in green cucumber cotyledon tissues. Pestic. Biochem. Physiol. 35:119126.CrossRefGoogle Scholar
4. Chang, J. H., Konz, M. J., Aly, E. A., Sticker, R. E., Wilson, K. R., Krog, N. E., and Dickinson, P. R. 1987. 3-Isoxazolidinones and related compounds. A new class of herbicides. ACS Symp. Ser. 355:1023.Google Scholar
5. Duke, S. O. 1985. Effects of herbicides on nonphotosynthetic biosynthetic processes. Pages 91112 in Duke, S. O., ed. Weed Physiology. Vol. II. Herbicide Physiology. CRC Press, Inc., Boca Raton, FL.Google Scholar
6. Duke, S. O. and Kenyon, W. H. 1986. Effects of dimethazone (FMC 57020) on chloroplast development. II. Pigment synthesis and photosynthetic function in cowpea (Vigna unguiculata L.) primary leaves. Pestic. Biochem. Physiol. 25:1118.CrossRefGoogle Scholar
7. Duke, S. O., Kenyon, W. H., and Paul, R. N. 1985. FMC 57020 effects on chloroplast development in pitted morningglory (Ipomoea lacunosa) cotyledons. Weed Sci. 33:786794.CrossRefGoogle Scholar
8. Duke, S. O. and Paul, R. N. 1986. Effects of dimethazone (FMC 57020) on chloroplast development. I. Ultrastructural effects on cowpea (Vigna unguiculata L.) primary leaves. Pestic. Biochem. Physiol. 25:110.Google Scholar
9. Duke, S. O., Wickliff, J. L., Vaughn, K. C., and Paul, R. N. 1982. Tentoxin does not cause chlorosis in greening mung bean leaves by inhibiting photophosphorylation. Physiol. Plant. 56:387398.CrossRefGoogle Scholar
10. Halliwell, B. 1982. The toxic effects of oxygen on plant tissues. In Oberley, L. W., ed. Superoxide Dismutase. Vol. I. CRC Press, Inc., Boca Raton, FL. Pages 89123.Google Scholar
11. Henningsen, K. W. and Thorne, S. W. 1974. Esterification and spectral shifts of chlorophyll(ide) in wildtype and mutant seedlings developed in darkness. Physiol. Plant. 30:8289.Google Scholar
12. Hoagland, R. E., Duke, S. O., and Elmore, C. D. 1979. Effects of glyphosate on metabolism of phenolic compounds. III. Phenylalanine ammonia-lyase activity, free amino acids, soluble protein and hydroxyphenolic compounds in axes of dark-grown soybeans. Physiol. Plant. 46:357366.Google Scholar
13. Ji, W. and Hatzios, K. K. 1990. Regulation of HMG-CoA reductase in corn by selected herbicides. Proc. South. Weed Sci. Soc. 43:350.Google Scholar
14. Lützow, M., Beyer, P., and Kleinig, H. 1990. The herbicide Command does not inhibit the prenyl diphosphate-forming enzymes in plastids. Z. Naturforsch. 45c:856858.Google Scholar
15. Norman, M. A., Liebl, R. A., and Widholm, J. M. 1990. Site of clomazone action in tolerant soybean and susceptible cotton photomixotrophic cell suspension cultures. Plant Physiol. 94:704709.CrossRefGoogle ScholarPubMed
16. Rebeiz, C. A., Montazer-Zouhoor, A., Hopen, H. J., and Wu, S. M. 1984. Photodynamic herbicides. I. Concept and phenomenology. Enzyme Microb. Technol. 5:390401.Google Scholar
17. Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17:208212.Google Scholar
18. Ridley, S. M. 1982. Carotenoids in herbicide action in carotenoid chemistry and biochemistry. Pages 353369 in Britton, C. and Goodwin, T. W., eds. Pergamon Press, Oxford.Google Scholar
19. Sandmann, G. and Böger, P. 1983. Comparison of the bleaching activity of norflurazon and oxyfluorfen. Weed Sci. 31:338341.CrossRefGoogle Scholar
20. Sandmann, G. and Böger, P. 1986. Interference of dimethazone with formation of terpenoid compounds. Z. Naturforsch. 41c:729732.CrossRefGoogle Scholar
21. Sandmann, G. and Böger, P. 1987. Interconversion of prenyl pyrophosphates and subsequent reactions in the presence of FMC 57020. Z. Naturforsch. 42c:803807.Google Scholar
22. Shibata, K. 1957. Spectroscopic studies on chlorophyll formation in intact leaves. J. Biochem. 44:147173.Google Scholar
23. Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:3143.Google Scholar
24. Stipanovic, R. D., Stoessl, A., Stothers, J. B., Airman, D. W., Bell, A. A., and Heinstein, P. 1986. The stereochemistry of the biosynthetic precursor of gossypol. J. Chem. Soc. Commun. 1986:100101.CrossRefGoogle Scholar
25. Veech, J. A., Stipanovic, R. D., and Bell, A. A. 1976. Peroxidative conversion of hemigossypol to gossypol. A revised structure for isohemigossypol. J. Chem. Soc. Commun. 1976:144145.Google Scholar
26. Vencill, W. K., Hatzios, K. K., and Wilson, H. P. 1989. Growth and physiological responses of normal, dwarf and albino corn (Zea mays) to clomazone treatments. Pestic. Biochem. Physiol. 35:8188.Google Scholar
27. Vencill, W. K., Hatzios, K. K., and Wilson, H. P. 1990. Absorption, translocation, and metabolism of 14C-clomazone in soybean (Glycine max) and three Amaranthus weed species. J. Plant Growth Regul. 9:127132.CrossRefGoogle Scholar
28. Weimer, M. R., Buhler, D. D., and Balke, N. E. 1991. Clomazone selectivity: absence of differential uptake, translocation, or detoxication. Weed Sci. 39:(In press).Google Scholar
29. Westberg, D. E., Oliver, L. R., and Frans, R. E. 1989. Weed control with clomazone alone and with other herbicides. Weed Technol. 3:678685.Google Scholar
30. Weston, L. A. and Barrett, M. 1989. Differential tolerance of tomato (Lycopersicon esculentum) and bell pepper (Capsicum annum) to clomazone. Weed Sci. 37:285289.Google Scholar
31. Wickliff, J. L., Duke, S. O., and Vaughn, K. C. 1982. Involvement of photobleaching and inhibition of protochlorophyll(ide) accumulation in tentoxin effects on greening mung bean seedlings. Physiol. Plant. 56:399406.Google Scholar