Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-21T18:45:52.606Z Has data issue: false hasContentIssue false

Chlorsulfuron-Resistant Sugarbeet: Cross-Resistance and Physiological Basis of Resistance

Published online by Cambridge University Press:  12 June 2017

Stephen E. Hart
Affiliation:
Dep. Crop and Soil Sci., Michigan State Univ., East Lansing 48824
Joseph W. Saunders
Affiliation:
Dep. Crop and Soil Sci., Michigan State Univ., East Lansing 48824
Donald Penner
Affiliation:
Dep. Crop and Soil Sci., Michigan State Univ., East Lansing 48824

Abstract

Greenhouse and laboratory studies were conducted to determine the extent of cross-resistance of chlorsulfuron-resistant sugarbeet (CR1-B) to other herbicides that inhibit acetolactate synthase (ALS) and to determine the physiological basis of resistance. Cross-resistance to metsulfuron, imazaquin, and imazethapyr was not evident, while only marginal cross-resistance was observed to triasulfuron, DPX-L5300, and nicosulfuron. CR1-B was moderately resistant to chlorsulfuron and chlorimuron and was highly cross-resistant to thifensulfuron and primisulfuron. Further greenhouse studies demonstrated that CR1-B was not significantly injured by thifensulfuron and primisulfuron applied at or exceeding the field use rate. Studies with 14C-primisulfuron showed that differential absorption or metabolism of primisulfuron could not account for the observed resistance. ALS enzyme assays showed that the CR1-B ALS enzyme activity was 66, 26, and 13 times less sensitive to chlorsulfuron, thifensulfuron, and primisulfuron inhibition, respectively, compared to ALS enzyme extracted from sensitive sugarbeets. An altered ALS enzyme, which is less sensitive to sulfonylurea herbicide inhibition, appears to be the physiological basis of resistance.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1992 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Baird, J. H., Wilcut, J. W., Wehtje, G. R., Dickens, R., and Sharpe, S. 1989. Absorption, translocation, and metabolism of sulfometuron in centipede grass (Eremochloa ophiuroides) and Bahiagrass (Paspalum notatum). Weed Sci. 37:4246.Google Scholar
2. Brewster, B. D. and Appleby, A. P. 1983. Response of wheat (Triticum aestivum) and rotation crops to chlorsulfuron. Weed Sci. 31:861865.Google Scholar
3. Chaleff, R. S. and Bascomb, N. F. 1987. Genetic and biochemical evidence for multiple forms of acetolactate synthase in Nicotiana tabacum . Mol. & Gen. Genet. 210:3338.Google Scholar
4. Doley, W. P. and Saunders, J. W. 1989. Hormone-free medium will support callus production and subsequent shoot regeneration from whole plant leaf explants in some sugarbeet (Beta vulgaris L.) populations. Plant Cell Rep. 8:222225.Google Scholar
5. Fredrickson, D. R. and Shea, P. J. 1986. Effect on soil pH on degradation, movement, and plant uptake of chlorsulfuron. Weed Sci. 34:328332.Google Scholar
6. Gabard, J. M., Charest, P. J., Iyer, V. N., and Miki, B. L. 1989. Cross-resistance to short residual sulfonylurea herbicides in transgenic tobacco plants. Plant Physiol. 91:574580.Google Scholar
7. Hall, L. M. and Devine, M. D. 1990. Cross-resistance of a chlorsulfuron resistant biotype of Stellaria media to a triazolopyrimidue herbicide. Plant Physiol. 93:962966.Google Scholar
8. Haughn, G. W. and Somerville, C. 1986. Sulfonylurea-resistant mutants of Arabidopsis thaliana . Mol. & Gen. Genet. 204:430434.Google Scholar
9. Haughn, G. W., Smith, J., Mazur, B., and Somerville, C. 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. & Gen. Genet. 211:266271.Google Scholar
10. Lee, K. Y., Townsend, J., Tepperman, J., Black, M., Chui, C. F., Mazur, B., Dunsmuir, P., and Bedbrook, S. 1988. The molecular basis for sulfonylurea herbicide resistance in tobacco. EMBO J. 7:12411248.Google Scholar
11. Levitt, G., Ploeg, H. L., Weigel, R. C., and Fitzgerald, D. J. 1981. 2-chloro-N-[4-methoxy-6-methyl-1,3,5-triazine-2-yl] amino carbonyl benzenesulfonamide, a new herbicide. J. Agric. Food Chem. 29:416424.Google Scholar
12. Lowry, O. H., Rosebrough, N. S., Farr, A. L., and Randall, R. S. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265275.Google Scholar
13. Moyer, S. R., Esau, R., and Kozub, G. C. 1990. Chlorsulfuron persistence and response of nine rotational crops in alkaline soils of Southern Alberta. Weed Technol. 4:543548.Google Scholar
14. Ray, T. B. 1984. Site of action of chlorsulfuron: Inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75:827831.Google Scholar
15. Renner, K. A. and Powell, G. E. 1991. Response of sugarbeet (Beta vulgaris) to herbicide residues in soil. Weed Technol. 5:622627.Google Scholar
16. Saari, L. L., Cotterman, S. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93:5561.Google Scholar
17. Saunders, J. W., Acquaah, G., Renner, K. A., Penner, D., and Doley, W. P. 1989. Cell selection for sulfonylurea herbicide resistance in sugarbeet. Abstr. Am. Soc. Agron. Page 179.Google Scholar
18. Saxena, P. K. and King, S. 1988. Herbicide resistance in Datura innoxia: Cross-resistance of sulfonylurea-resistant cell lines to imidazolinones. Plant Physiol. 86:863867.Google Scholar
19. Schweizer, E. E. and Dexter, A. G. 1987. Weed control in sugarbeets (Beta vulgaris) in North America. Rev. Weed Sci. 3:113133.Google Scholar
20. Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones: potent inhibitors of acetohydroxy acid synthase. Plant Physiol. 76:545546.Google Scholar
21. Shribbs, S. M., LyBecker, D. W., and Schweizer, E. E. 1990. Bioeconomic weed management models for sugarbeet (Beta vulgaris) production. Weed Sci. 38:436444.Google Scholar
22. Westerfield, W. W. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem. 161:495502.Google Scholar
23. Wilcut, J. W., Wehtje, G. R., Patterson, M. G., Cole, T. A., and Hicks, T. V. 1989. Absorption, translocation, and metabolism of foliar-applied chlorimuron in soybeans (Glycine max), peanuts (Arachis hypogea), and selected weeds. Weed Sci. 37:175180.Google Scholar
24. Winter, S. R. and Wiese, A. F. 1982. Economical control of weeds in sugarbeets (Beta vulgaris). Weed Sci. 30:620623.Google Scholar
25. Yadav, N., McDevitt, R. E., Benerd, S., and Falco, S. C. 1986. Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Proc. Nat. Acad. Sci. USA 83:44184422.Google Scholar