Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T20:03:37.327Z Has data issue: false hasContentIssue false

Calculating the Threshold Temperature of Development for Weeds

Published online by Cambridge University Press:  12 June 2017

Ann M. Wiese
Affiliation:
Dep. Hortic., Univ. Wisconsin, Madison, WI 53706
Larry K. Binning
Affiliation:
Dep. Hortic., Univ. Wisconsin, Madison, WI 53706

Abstract

Weed seeds were germinated in incubators at constant temperatures ranging from 4 to 32 C increments. Percent germination per day was regressed against temperature with the x-intercept representing the low threshold temperature for development. Low threshold temperatures for development (low TTD's) calculated for wild proso millet (Panicum miliaceum L. # PANMI), barnyardgrass [Echinochloa crus-galli (L.) Beauv. # ECHCG], common lambsquarters (Chenopodium album L. # CHEAL), and redroot pigweed (Amaranthus retroflexus L. # AMARE) were 6.9, 9.7, 6.0, and 10.0 C, respectively.

Type
Weed Biology and Ecology
Copyright
Copyright © 1987 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Andersen, R. N. 1968. General information on weed propagation. Pages 16 in Andersen, R. N., ed. Germination and Establishment of Weeds for Experimental Purposes. W. H. Humphrey Press, Inc., Geneva, NY.Google Scholar
2. Arnold, C. Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Proc. Am. Soc. Hortic. Sci. 74:430445.Google Scholar
3. Barfield, C. S., Mitchell, E. R., and Poe, S. L. 1978. A temperature-dependent model for fall armyworm development. Ann. Entomol. Soc. Am. 71:7074.Google Scholar
4. Basselt, I. J. and Crompton, C. W. 1978. The biology of Canadian weeds. 32. Chenopodium album L. Can. J. Plant Sci. 58:10611072.CrossRefGoogle Scholar
5. Brown, D. M. 1960. Soybean ecology. I. Development-temperature relationships from controlled environment studies. Agron. J. 9:493496.Google Scholar
6. Burgert, K. L. and Burnside, O. C. 1972. Optimum temperature for germination and seedling development of black nightshade. North Cent. Weed Control Conf. Res. Rep. 29:5657.Google Scholar
7. Buttery, B. R. and Buzzell, R. I. 1974. Evaluation of methods used in computing net assimilation rates of soybeans [Glycine max (L.) Merrill. Crop Sci. 14:4144.Google Scholar
8. Chu, C., Ludford, P. M., Ozbun, J. L., and Sweet, R. D. 1978. Effects of temperature and competition on the establishment and growth of redroot pigweed and common lambsquarters. Crop Sci. 18:308310.Google Scholar
9. Coultas, J. and Behrens, R. 1983. Growth characteristics of wild proso millet (Panicum miliaceum L.) in Minnesota. Proc. North Cent. Weed Control Conf. 38:37.Google Scholar
10. Eckenrode, C. J., Vea, E. V., and Stone, K. W. 1975. Population trends of onion maggots correlated with air thermal unit accumulations. Environ. Entomol. 4:785789.Google Scholar
11. Gilmore, E. C. and Rogers, J. S. 1958. Heat units as a method of measuring maturity in corn. Agron. J. 50:611615.Google Scholar
12. Hurd, R. G. 1977. Vegetative plant growth analysis in controlled environments. Ann. Bot. 41:779787.CrossRefGoogle Scholar
13. Katz, Y. H. 1952. The relationship between heat unit accumulation and the planting and harvesting of canning peas. Agron. J. 44:7478.Google Scholar
14. King, L. J. 1966. The establishment of weeds: seed structure, germination, and seedling ecesis. Pages 115161 in Weeds of the World: Biology and Control. Interscience Publishers, Inc., New York.Google Scholar
15. Lana, E. P. and Haber, E. S. 1952. Seasonal variability as indicated by cumulative degree hours with sweetcorn. Proc. Am. Hortic. Sci. 59:389392.Google Scholar
16. Michael, J. L., Fawcett, R. S., and Taylor, S. E. 1984. Effects of soil temperature on early growth of giant foxtail (Setaria faberi Herrm.) and velvetleaf (Abutilon theophrasti Medic.). Abstr. Weed Sci. Soc. Am. 24:9.Google Scholar
17. Nussbaum, E. S., Wiese, A. F., Crutchfield, D. E., Chenault, E. W., and Lavake, D. 1985. The effects of temperature and rainfall on emergence and growth of eight weeds. Weed Sci. 33:165170.Google Scholar
18. Orwick, P. L., Schreiber, M. M., and Holt, D. A. 1978. Stimulation of foxtail (Setaria viridis var. robusta-alba) and (Setaria viridis var. robusta-purpurea) growth: the development of SETSIM. Weed Sci. 26:691699.Google Scholar
19. Sanborn, S. M., Wyman, J. A., and Chapman, R. K. 1982. Threshold temperature and heat unit summations for seedcorn maggot development under controlled conditions. Ann. Entomol. Soc. Am. 75:103106.Google Scholar
20. Sharpe, P.J.H. and DeMichele, D. W. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64:649670.Google Scholar
21. Sivakumar, M.V.K. and Shaw, R. H. 1978. Methods of growth analysis in field grown soybeans [Glycine max (L.) Merrill.]. Ann. Bot. 42:213222.Google Scholar
22. Stinner, R. E., Gutierrez, A. P., and Butler, G. D. Jr. 1974. An algorithm for temperature-dependent growth rate stimulation. Can. Entomol. 106:519524.Google Scholar
23. Stoller, E. W. and Wax, L. M. 1973. Periodicity of germination and emergence of some annual weeds. Weed Sci. 21:574580.CrossRefGoogle Scholar
24. Wang, J. Y. 1960. A critique of the heat unit approach to plant response studies. Ecology. 41:785790.Google Scholar
25. Wiese, A. M. and Binning, L. K. 1982. Heat units, a possible predictor for seedling weed growth. Abstr. Weed Sci. Soc. Am. 22:9293.Google Scholar
26. Wiese, A. M. and Binning, L. K. 1982. Effect of tillage date on weed spectrum emerging. Proc. North Cent. Weed Control Conf. 37:11.Google Scholar