Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T16:14:09.807Z Has data issue: false hasContentIssue false

Biological Significance and Fate of Atrazine under Aquifer Conditions

Published online by Cambridge University Press:  12 June 2017

Glenn R. Wehtje
Affiliation:
Univ. of Nebraska, Lincoln, NE 68583
Roy F. Spalding
Affiliation:
Univ. of Nebraska, Lincoln, NE 68583
Orvin C. Burnside
Affiliation:
Univ. of Nebraska, Lincoln, NE 68583
Stephen R. Lowry
Affiliation:
Univ. of Nebraska, Lincoln, NE 68583
J. Robert C. Leavitt
Affiliation:
Univ. of Nebraska, Lincoln, NE 68583

Abstract

Concentrations of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] in contaminated groundwater recovered from 41 monitoring wells in Hall and Buffalo counties, Nebraska range from 0.01 to 8.29 μg/L. Over a 1-year period concentrations fluctuated sufficiently in a seasonal pattern to indicate that atrazine dissipation occurs. This reduction in concentration can be attributed to adsorption, dispersion, and degradation. A limited amount of atrazine degraded chemically to hydroxyatrazine [2-hydroxy-4-(ethylamino)-6-(isopropylamino)-s-triazine] under simulated aquifer conditions; microbial degradation could not be detected. A geometrical progression model for predicting long term residue accumulation indicates that current contamination levels probably reflect a steady-state situation between the amount that yearly enters into, and the partial degradation that occurs within, the aquifer. Oat (Avena sativa L. ‘Neal’) bioassays indicate that present levels of groundwater contamination remain well below the threshold necessary for phytotoxicity.

Type
Research Article
Copyright
Copyright © 1983 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Armstrong, D. E., Chester, G., and Harris, R. F. 1967. Atrazine hydrolysis in soil. Soil Sci. Soc. Amer. Proc. 31:6166.Google Scholar
2. Baradari, M. R., Haderlie, L. C., and Wilson, R. G. 1980. Chlorfurenol effects on absorption and translocation of dicamba in Canada thistle (Cirsium arvense). Weed Sci. 28:197200.Google Scholar
3. Best, J. A. and Weber, J. B. 1974. Disappearance of s-triazines as affected by soil pH using a balance-sheet approach. Weed Sci. 22:364373.CrossRefGoogle Scholar
4. Clark, F. E. 1965. Agar-plate method for total microbial count. pp. 14601472. In Black, C. A. (ed.) Methods of soil analysis. Part 2. Chemical and Microbiological properties. Amer. Soc. Agron., Madison, WI.Google Scholar
5. Couch, R. W., Gramlich, J. W., Davis, D. E., and Funderburk, H. H. Jr. 1965. The metabolism of atrazine and simazine by soil fungi. Proc. South Weed Sci. Soc. 18:623631.Google Scholar
6. Doran, J. W. 1980. Microbial changes associated with residue management with reduced tillage. Soil Sci. Soc. Am. J. 44:518524.CrossRefGoogle Scholar
7. Gormley, J. R. and Spalding, R. F. 1979. Sources and concentrations of nitrate-nitrogen in groundwater of the Central Platte Region, Nebraska. Groundwater. 17:291301.CrossRefGoogle Scholar
8. Goswami, K. H. and Green, R. E. 1971. Microbial degradation of the herbicide atrazine and its 2-hydroxy analog in submerged soils. Environ. Sci. Tech. 5:426429.Google Scholar
9. Harris, C. I., Wollson, E. A., and Hummer, B. E. 1969. Dissipation of herbicides at three soil depts. Weed Sci. 17:2731.Google Scholar
10. Hill, G. D., McGahen, J. W., Baker, H. M., Finnerty, D. W., and Bingeman, C. W. 1955. The fate of substituted urea herbicides in agricultural soils. Agron. J. 47:93104.CrossRefGoogle Scholar
11. Hiltbold, A. E. and Buchanan, G. A. 1977. Influence of soil pH on persistence of atrazine in the field. Weed Sci. 26:515520.Google Scholar
12. Jordan, L. S., Farmer, W. S., Gordon, J. R., and Day, B. G. 1970. Non-biological detoxification of the s-triazine herbicides. Residue Rev. 32:267286.Google Scholar
13. Junk, G. A., Spalding, R. F., and Richards, J. J. 1980. Areal, vertical, and temporal differences in groundwater chemistry: II. organic constituents. J. Environ. Qual. 9:479483.Google Scholar
14. LeBaron, H. H. 1970. Ways and means to influence activity and the persistence of triazine herbicides in soils. Residue Rev. 32:311353.Google ScholarPubMed
15. Linderman, C. L., Mielke, L. N., and Schuman, G. E. 1976. Deep percolation in furrow-irrigated sandy soil. Trans. Am. Soc. Agric. Eng. 19:250258.CrossRefGoogle Scholar
16. Majka, J. T. and Lavy, T. L. 1977. Adsorption mobility and degradation of cyanazine and diuron in soils. Weed Sci., 25:401406.Google Scholar
17. McCormick, L. L. and Hiltbold, A. E. 1965. Microbiological decomposition of atrazine and diuron in soil. Weeds 14:7782.CrossRefGoogle Scholar
18. Roeth, F. W., Lavy, T. L., and Burnside, O. C. 1969. Atrazine degradation in two soil profiles. Weed Sci. 17:202206.Google Scholar
19. Russell, J. D., Cruz, M., White, J. L., Bailey, G. W., Payne, W. R. Jr., Pope, D. Jr., and Teasley, J. I. 1968. Mode of chemical degradation of s-triazine by montmorillonite. Science 160:13401342.Google Scholar
20. Skipper, H. D., Gilmour, C. M., and Furtick, W. R. 1967. Microbial versus chemical degradation of atrazine in soils. Soil Sci. Soc. Amer. Proc. 31:653656.Google Scholar
21. Skipper, H. D. and Volk, V. V. 1972. Biological and chemical degradation of atrazine in three Oregon soils. Weed Sci. 20:344347.CrossRefGoogle Scholar
22. Skipper, H. D., Volk, V. V., Mortland, M. M., and Raman, K. V. 1978. Hydrolysis of atrazine on soil colloids. Weed Sci. 26:4651.Google Scholar
23. Spalding, R. F., Exner, M. E., Sullivan, J. J., and Lyon, P. A. 1979. Chemical seepage from a tailwater recovery pit to adjacent ground water. J. Environ. Qual. 8:374383.CrossRefGoogle Scholar
24. Spalding, R. F. and Exner, M. E. 1980. Areal, vertical and temporal differences in groundwater chemistry: I. Inorganic constituents. J. Environ. Qual. 9:466479.CrossRefGoogle Scholar
25. Spalding, R. F., Junk, G. A., and Richards, J. J. 1980. Pesticides in the groundwater beneath irrigated farmland in Nebraska – August 1978. Pestic. Monit. J. 14:7073.Google Scholar
26. Steel, R.G.D. and Torrie, J. H. 1960. Principles and Procedures of Statistics. McGraw-Hill Book Co., New York, London, and Toronto. 481.Google Scholar
27. Weber, J. B. 1970. Mechanism of adsorption of s-triazines by clay colloids and factors affecting plant availability. Residue Rev. 32:93130.Google ScholarPubMed