Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T19:44:29.852Z Has data issue: false hasContentIssue false

The Basis of Imazethapyr Tolerance in Cowpea (Vigna sinensis)

Published online by Cambridge University Press:  12 June 2017

Roger J. Baerg
Affiliation:
Dep. of Agron., Univ. Kentucky, Lexington, KY 40546-0091
Michael Barrett
Affiliation:
Dep. of Agron., Univ. Kentucky, Lexington, KY 40546-0091

Abstract

Greenhouse and laboratory experiments were conducted to determine the basis of imazethapyr tolerance in cowpea. Cowpea required more than 700 g ha−1 imazethapyr to reduce shoot growth 50% while corn required 70 g ha−1 to reduce growth 50% in greenhouse experiments. Extractable acetohydroxy acid synthase activity from cowpea 24 h after foliar imazethapyr treatment was only 20% of that of untreated cowpea but increased to control levels 72 h after treatment (HAT). The unifoliate leaves of cowpea absorbed 25% of the 14C-imazethapyr applied 72 HAT. Movement of 14C-imazethapyr out of the treated zone increased gradually to approximately 47% of the absorbed 14C 168 HAT. Parent imazethapyr decreased from 41 to 27% of the recovered 14C between 4 and 24 HAT, and continued to decrease to 14% by 168 HAT. Polar metabolites increased from 27 to 55% of the recovered 14C from 24 to 168 HAT. The polar metabolites of imazethapyr included hydroxyimazethapyr and conjugates of hydroxyimazethapyr. Tolerance of cowpea to imazethapyr is based on the plants ability to metabolize the herbicide to nontoxic metabolites.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Baerg, R. J. 1995. In vitro imazethapyr metabolism by an inducible cytochrome P450 monooxygenase in corn. Abstr. Weed Sci. Soc. Amer. 35: 208.Google Scholar
2. Barrett, M. 1989. Protection of corn (Zea mays) and sorghum (Sorghum bicolor) from imazethapyr toxicity with antidotes. Weed Sci. 37: 296301.Google Scholar
3. Barrett, M. and Maxson, J. M. 1991. Naphthalic anhydride induces imazethapyr metabolism and cytochrome P-450 activity in maize. Z. Naturforsch 46c: 897900.Google Scholar
4. Boldt, L. D. and Barrett, M. 1991. Reducing imazethapyr injury to field corn (Zea mays) with naphthalic anhydride. Weed Sci. 39: 640643.Google Scholar
5. Cole, T. A., Wehtje, G. R., Wilcut, J. W., and Hicks, T. V. 1989. Behavior of imazethapyr in soybeans (Glycine max), peanuts (Arachis hypogaea), and selected weeds. Weed Sci. 37: 639644.Google Scholar
6. Ghallant, E. R. and Balke, N. E. 1994. Characterization of UDP-glucose:6-hydroxybentazon glucosyltransferase purified from soybean cells. Abstr. Weed Sci. Soc. Amer. 34: 179.Google Scholar
7. Hart, R. G., Lignowski, E. M., and Taylor, F. R. 1992. Imazethapyr Herbicide. Pages 247256 in Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinone Herbicides. CRC Press, Inc., Boca Raton, Florida.Google Scholar
8. Lamoureux, G. L. and Frear, D. S. 1986. Xenobiotic conjugation in higher plants. Pages 62105 in Paulson, G. D., Caldwell, J., Hutson, D. H., and Menn, J. J. (eds), Xenobiotic conjugation chemistry, ACS Symposium Series No. 299. Am. Chem. Soc., Washington D.C. Google Scholar
9. Leah, M.T.T., Worrall, L., and Cobb, A. H. 1992. Isolation and characterization of two glucosyltransferases from Glycine max associated with bentazon metabolism. Pestic. Sci. 34: 8189.Google Scholar
10. Little, D. L. and Shaner, D. L. 1992. Absorption and translocation of the imidazolinone herbicides. Pages 5369 in Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinone Herbicides. CRC Press, Inc., Boca Raton, Florida.Google Scholar
11. Mallipudi, N. M., Lee, A., Fiala, R., daCunha, A. R., and Safarpour, M. 1994. Metabolism of imazethapyr (AC 263499) herbicide in corn. J. Agric. Food Chem. 42: 12131218.Google Scholar
12. Muhitch, M. J., Shaner, D. L., and Stidham, M. A. 1987. Imidazolinones and acetohydroxyacid synthase from higher plants. Plant Physiol. 83: 451456.Google Scholar
13. Newhouse, K. E., Wang, T., and Anderson, P. C. 1992. Imidazolinone resistant crops. Pages 139150 in Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinone Herbicides. CRC Press, Inc., Boca Raton, Florida.Google ScholarPubMed
14. Nissen, S. J., Masters, R. A., and Stougaard, R. N. 1994. Imazethapyr absorption and fate in leafy spurge (Euphorbia esula). Weed Sci. 42: 158162.Google Scholar
15. Perry, K. E. 1991. Behavior of ALS inhibiting herbicides in plants and soils. , University of Kentucky, Lexington. Pages 5051.Google Scholar
16. Shaner, D. L., Anderson, P. C. and Stidham, M. A. 1984. Imidazolinones: Potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76: 545546.Google Scholar
17. Shaner, C. L. and Mallipudi, N.H. 1991. Mechanisms of selectivity of the imidazolinones. Pages 91102 in D. L. Shaner and S. L. O'Connor, eds. The Imidazolinone Herbicides. CRC Press, Inc., Boca Raton, Florida.Google Scholar
18. Shaner, D. L. and Singh, B. K. 1991. Imidazolinone-induced loss of acetohydroxyacid synthase activity in maize is not due to the enzyme degradation. Plant Physiol. 97: 13391341.Google Scholar
19. Shaner, D. L., Singh, B. K., and Stidham, M. A. 1990. Interaction of imidazolinone with plant acetohydroxy acid synthase: Evidence for in vivo binding and competition with sulfmeturon methyl. J. Agric. Food Chem. 38: 12791282.Google Scholar
20. Singh, B. K., Stidham, M. A., and Shaner, D. L. 1988. Assay of acetohydroxyacid synthase. Anal. Biochem. 171: 173179.Google Scholar
21. Stidham, M. A. and Singh, B. K. 1992. Imidazolinone-acetohydroxy acid synthase interactions. Pages 7190 in Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinone Herbicides. CRC Press, Inc., Boca Raton, Florida.Google Scholar
22. Stidham, M. A. 1991. Herbicides that inhibit acetohydroxyacid synthase. Weed Sci. 39: 428434.Google Scholar
23. Tecle, B, da Cunha, A., and Shaner, D. L. 1993. Differential routes of metabolism of imidazolinones: Basis for soybean (Glycine max) selectivity. Pestic. Biochem. Physiol. 46: 120130.Google Scholar