Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T00:04:39.478Z Has data issue: false hasContentIssue false

Basis for Herbicide Resistance in Canadian Populations of Wild Oat (Avena fatua)

Published online by Cambridge University Press:  20 January 2017

Hugh J. Beckie*
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
Suzanne I. Warwick
Affiliation:
AAFC, Eastern Cereal and Oilseed Research Centre, K.W. Neatby Building, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6
Connie A. Sauder
Affiliation:
AAFC, Eastern Cereal and Oilseed Research Centre, K.W. Neatby Building, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6
*
Corresponding author's E-mail: [email protected]

Abstract

Wild oat is the second-most abundant, but most economically important, weed across the Canadian Prairies of western Canada. Despite the serious economic effects of resistance to acetyl-CoA carboxylase (ACC) or acetolactate synthase (ALS) inhibitors or both in this weed throughout the Northern Great Plains of North America, little research has examined the basis for herbicide resistance. We investigated target-site and nontarget-site mechanisms conferring ACC- and ALS-inhibitor resistance in 16 wild oat populations from across western Canada (four ACC-inhibitor resistant, four ALS-inhibitor resistant, and eight ACC- and ALS-inhibitor resistant). The ACC1 mutations were found in 8 of the 12 ACC inhibitor-resistant populations. The Ile1781Leu mutation was detected in three populations, the Trp2027Cys and Asp2078Gly mutations were in two populations each, and the Trp1999Cys, Ile2041Asn, Cys2088Arg, and Gly2096Ser substitutions were in one population each. Three populations had two ACC1 mutations. Only 2 of the 12 ALS inhibitor-resistant populations had an ALS target-site mutation—Ser653Thr and Ser653Asn substitutions. This is the first global report of ALS target-site mutations in Avena spp. and four previously undocumented ACC1 mutations in wild oat. Based on these molecular analyses, seedlings of five ACC + ALS inhibitor-resistant populations (one with an ACC1 mutation; four with no ACC or ALS mutations) were treated with malathion, a known cytochrome P450 monooxygenase inhibitor, followed by application of one of four ACC- or ALS-inhibiting herbicides. Malathion treatment often resulted in control or suppression of these populations, suggesting involvement of this enzyme system in contributing to resistance to both ACC and ALS inhibitors.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andrews, T. S., Morrison, I. N., and Penner, G. A. 1998. Monitoring the spread of ACCase inhibitor resistance among wild oat (Avena fatua) patches using AFLP analysis. Weed Sci. 46:196199.Google Scholar
Baum, B. R. 1968. On some relationships between Avena sativa and A. fatua (Gramineae) as studied from Canadian material. Can. J. Bot. 46:10131024.Google Scholar
Beckie, H. J. and Tardif, F. J. 2011. Herbicide cross resistance in weeds. Crop Prot. In press.Google Scholar
Beckie, H. J., Lozinski, C., and Shirriff, S. 2009. Alberta Weed Survey of Herbicide-Resistant Weeds in 2007. Saskatoon, SK Agriculture and Agri-Food Canada Weed Survey Series Publ. 09-1. 36 p.Google Scholar
Beckie, H. J., Lozinski, C., and Shirriff, S. 2010. Manitoba Weed Survey of Herbicide-Resistant Weeds in 2008. Saskatoon, SK Agriculture and Agri-Food Canada Weed Survey Series Publ. 10-1. 33 p.Google Scholar
Beckie, H. J., Leeson, J. Y., Thomas, A. G., Brenzil, C. A., Hall, L. M., Holzgang, G., Lozinski, C., and Shirriff, S. 2008. Weed resistance monitoring in the Canadian Prairies. Weed Technol. 22:530543.Google Scholar
Christoffers, M. J., Berg, M. L., and Messersmith, C. G. 2002. An isoleucine to leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat. Genome. 45:10491056.Google Scholar
Christopher, J. T., Powles, S. B., Liljegren, D. R., and Holtum, J. A. M. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum), II: chlorsulfuron resistance involves a wheat-like detoxification system. Plant Physiol. 95:10361043.Google Scholar
Christopher, J. T., Preston, C., and Powles, S. B. 1994. Malathion antagonizes metabolism-based chlorsulfuron resistance in Lolium rigidum . Pestic. Biochem. Physiol. 49:172182.Google Scholar
Claude, J-P., Didier, A., Favier, P., and Thalinger, P. P. 2004. Development of a European database for the evolution follow-up of resistant black-grass (Alopecurus myosuroides Huds.) populations in cereal crops. Page 48 in Proceedings of the Fourth International Weed Science Congress. Davis, CA International Weed Science Society.Google Scholar
Cocker, K. M., Coleman, J.O.D., Blair, A. M., Clarke, J. H., and Moss, S. R. 2000. Biochemical mechanisms of cross-resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in populations of Avena spp. Weed Res. 40:323334.Google Scholar
Cruz-Hipolito, H., Osuna, M. D., Domínguez-Valenzuela, J. A., Espinoza, N., and de Prado, R. 2011. Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua) from Latin America. J. Agric. Food Chem. 59:72617267.Google Scholar
Délye, C., Menchari, Y., Guillemin, J-P., Matéjicek, A., Michel, S., Camilleri, C., and Chauvel, B. 2007. Status of black-grass (Alopecurus myosuroides) resistance to acetyl-coenzyme A carboxylase inhibitors in France. Weed Res. 47:95104.Google Scholar
Délye, C., Michel, S., Bérard, A., Chauvel, B., Brunel, D., Guillemin, J-P., Dessaint, F., and le Corre, V. 2010. Geographical variation in resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides across the range of the arable weed Alopecurus myosuroides (black-grass). New Phytol. 86:10051017.Google Scholar
Délye, C., Zhang, X-Q., Michel, S., Matéjicek, A., and Powles, S. B. 2005. Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in black-grass. Plant Physiol. 137:794806.Google Scholar
Fischer, A. J., Bayer, D. E., Carriere, M. D., Ateh, C. M., and Yim, K-O. 2000. Mechanisms of resistance to bispyribac-sodium in an Echinochloa phyllopogon accession. Pestic. Biochem. Physiol. 68:156165.Google Scholar
Heap, I. M., Murray, B. G., Loeppky, H. A., and Morrison, I. N. 1993. Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in wild oat (Avena fatua). Weed Sci. 41:232238.Google Scholar
Hidayat, I. and Preston, C. 2001. Cross-resistance to imazethapyr in a fluazifop-P-butyl-resistant population of Digitaria sanguinalis . Pestic. Biochem. Physiol. 71:190195.Google Scholar
Joseph, O. O., Hobbs, S. L. A., and Jana, S. 1990. Diclofop resistance in wild oat (Avena fatua). Weed Sci. 38:475479.Google Scholar
Leeson, J. Y., Thomas, A. G., Hall, L. M., Brenzil, C. A., Andrews, T., Brown, K. R., and Van Acker, R. C. 2005. Prairie Weed Surveys of Cereal, Oilseed and Pulse crops from the 1970s to the 2000s. Saskatoon, Saskatchewan Agriculture and Agri-Food Canada Weed Survey Series Publ. 05-1. 395 p.Google Scholar
Letouzé, A. and Gasquez, J. 2003. Enhanced activity of several herbicide-degrading enzymes: a suggested mechanism responsible for multiple resistance in blackgrass (Alopecurus myosuroides). Agronomie (Paris) 23:601608.Google Scholar
Liu, W., Harrison, D. K., Chalupska, D., Gornicki, P., O'Donnell, C. C., Adkins, S. W., Haselkorn, R., and Williams, R. R. 2007. Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc. Natl. Acad. Sci. U. S. A. 104:36273632.Google Scholar
Maneechote, C., Preston, C., and Powles, S. B. 1997. A diclofop-methyl-resistant Avena sterilis biotype with a herbicide-resistant acetyl-coenzyme A carboxylase and enhanced metabolism of diclofop-methyl. Pestic. Sci. 49:105114.Google Scholar
Marshall, R. and Moss, S. 2004. Resistance to acetolactate inhibiting herbicides in UK black-grass (Alopecurus myosuroides) populations. Weed Sci. Soc. Am. Abstr. 44:15.Google Scholar
Moss, S. R., Cocker, K. M., Brown, A. C., Hall, L., and Field, L. M. 2003. Characterisation of target-site resistance to ACC-inhibiting herbicides in the weed Alopecurus myosuroides (black-grass). Pest Manag. Sci. 59:190201.Google Scholar
Nandula, V. K. and Messersmith, C. G. 2000. Mechanism of wild oat (Avena fatua L.) resistance to imazamethabenz-methyl. Pestic. Biochem. Physiol. 68:148155.Google Scholar
O'Donovan, J. T., Thomas, A. G., Leeson, J. Y., and Maurice, D. C. 2005. The impact of residual weeds on field crops in western Canada: moving beyond subjective estimates. Weed Sci. Soc. Am. Abstr. 45:129.Google Scholar
Powles, S. B. and Yu, Q. 2010. Evolution in action: plants resistant to herbicides. Annu. Rev. Plant Biol. 61:317347.Google Scholar
Preston, C. 2004. Herbicide resistance in weeds endowed by enhanced detoxification: complications for management. Weed Sci. 52:448453.Google Scholar
Preston, C. and Mallory-Smith, C. A. 2001. Biochemical mechanisms, inheritance, and molecular genetics of herbicide resistance in weeds. Pp. 2360 in Powles, S. B. and Shaner, D. L., eds. Herbicide Resistance and World Grains. New York CRC.Google Scholar
Rozen, S. and Skaletsky, H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132:365386.Google Scholar
[SAS] Statistical Analysis Systems. 1999. SAS/STAT User's Guide. Version 8. Cary, NC:SAS Institute,1243 p.Google Scholar
Seefeldt, S. S., Fuerst, E. P., Gealy, D. R., Shukla, A., Irzyk, G. P., and Devine, M. D. 1996. Mechanisms of resistance to diclofop of two wild oat (Avena fatua) biotypes from the Willamette Valley of Oregon. Weed Sci. 44:776781.Google Scholar
Sharma, M. P. and Vanden Born, W. H. 1978. The biology of Canadian weeds, 27: Avena fatua L. Can. J. Plant Sci. 58:141157.Google Scholar
Tan, M-K., Preston, C., and Wang, G-X. 2007. Molecular basis of multiple resistance to ACC-inhibiting and ALS-inhibiting herbicides in Lolium rigidum . Weed Res. 47:534541.Google Scholar
Tanhuanpaa, P., Manninen, O., and Kiviharju, E. 2010. QTLs for important breeding characteristics in the doubled haploid oat progeny. Genome. 53:482493.Google Scholar
Van Acker, R. C. 2009. Weed biology serves practical weed management. Weed Res. 49:15.Google Scholar
Vila-Aiub, M. M., Neve, P., and Powles, S. B. 2005. Resistance cost of a cytochrome P450 herbicide metabolism mechanism but not an ACC target-site mutation in a multiple resistant Lolium rigidum population. New Phytol. 167:787796.Google Scholar
Vila-Aiub, M. M., Neve, P., and Powles, S. B. 2009. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 184:751767.Google Scholar
Werck-Reichhart, D., Hehn, A., and Didierjean, L. 2000. Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci. 5:116123.Google Scholar
Yasuor, H., Osuna, M. D., Ortiz, A., Saldain, N. E., Eckert, J. W., and Fischer, A. J. 2009. Mechanism of resistance to penoxsulam in late watergrass [Echinochloa phyllopogon (Stapf) Koss.]. J. Agric. Food Chem. 57:36533660.Google Scholar
Supplementary material: File

Beckie et al. supplementary material

Table S1

Download Beckie et al. supplementary material(File)
File 79.9 KB
Supplementary material: File

Beckie et al. supplementary material

Table S2

Download Beckie et al. supplementary material(File)
File 40.4 KB