Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T22:07:04.127Z Has data issue: false hasContentIssue false

Application of 14C-Labeled Herbicides in Lysimeter Studies

Published online by Cambridge University Press:  12 June 2017

Fritz Führ*
Affiliation:
Inst, of Radioagronomy, Nuclear Research Ctr. Julich GmbH, P.O. Box 1913, D-5170 Julich, Federal Republic of Germany

Extract

Most herbicides are applied preemergence onto bare soil or during the early stage of plant development. Therefore, the major part of the active ingredient either reaches the soil surface immediately or later with decaying plant material. The further fate of the herbicide depends largely on the physicochemical behavior of the respective compound, the amount and method of application, and a number of soil, plant, and climatic factors influencing the persistence and bio availability of organic compounds in a given soil (5, 7). Especially in the upper 2-cm soil layer, drastic changes in temperature and moisture content during a growing season have a great influence on the degradation and adsorption of herbicides in soil (10, 31).

Type
Research Article
Copyright
Copyright © 1985 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Anderson, J.P.E. 1981. Soil moisture and the rate of biodegradation of diallate and triallate. Soil Biol. Biochem. 13:155161.Google Scholar
2. Cheng, H. H., Führ, F., and Mittelstaedt, W. 1975. Fate of methabenzthiazuron in the plant-soil system. Pages 271276 in Korte, F. and Coulston, F., eds. Environmental Quality and Safety of Pesticides, Supplement to Vol. III. G. Thieme, Publisher, Stuttgart.Google Scholar
3. Figge, K., Klahn, J., and Koch, J. 1983. Testing of chemicals by evaluation of their distribution and degradation patterns in an environmental standard system. Regul. Toxicol. Pharmacol. 3:199215.CrossRefGoogle Scholar
4. Figge, K. and Rehm, H. 1977. Uber das Verhalten des Insektizids Kelevan und seiner Abbauprodukte im Okosystem “Kartoffelacker”. Z. PflKrankh. PflSchutz. 84:385409.Google Scholar
5. Führ, F. 1978. Impact of environmental factors on uptake and metabolism of pesticides. Pages 3949 in Indo-German Seminar on Management of Pesticide Application in Agriculture. Rep. No. 1534. Nuclear Research Centre Julich, F.R.G. Google Scholar
6. Führ, F. 1982. Fate of herbicide chemicals in the agricultural environment with particular emphasis on the application of nuclear techniques. Pages 99111 in Agrochemicals: Fate in Food and the Environment. Int. Atomic Energy Agency, Vienna.Google Scholar
7. Führ, F. 1984. Agricultural pesticide residues. Pages 239270 in L'Annunziata, M. F. and Legg, J. O., eds. Isotopes and Radiation in Agricultural Sciences, Vol. 2. Academic Press, London.Google Scholar
8. Führ, F., Cheng, H. H., and Mittelstaedt, W. 1976. Pesticide balance and metabolism studies with standardized lysimeters. Landw. Forsch. 32:272278.Google Scholar
9. Führ, F. and Mittelstaedt, W. 1976. Des verhalten von Methabenzthiazuron in Boden and Pflanze nach Applikation von Methabenzthiazuron[benzolkern-U-14C] im Anwendungsjahr und Nachbau. Landwirtsch. Forsch. SH32:286294.Google Scholar
10. Führ, F. and Mittelstaedt, W. 1979. Effect of varying soil temperatures on the degradation of methabenzthiazuron, isocarbamide and metamitron. Z. Pflanzenernaehr. Bodenkd. 142: 657668.Google Scholar
11. Führ, F. and Mittelstaedt, W. 1983. Influence of experimental and certain environmental factors on the uptake of soil applied herbicides. Pages 183188 in Miyamoto, J. and Kearney, P. C., eds. Pesticide Chemistry: Human Welfare and the Environment. 4. Pesticide Residues and Formulation Chemistry. Pergamon Press, Oxford.Google Scholar
12. Führ, F., Mittelstaedt, W., and Wieneke, J. 1980. Bilanzversuche mit 14C-markiertem 1-(4-Chlorophenylcarbamoyl)-3-(4-chlorophenyl)-4-phenyl-2-pyrazolin (PH 60–42) nach Boden und Spritzapplikation in Freilandlysimetern. Chemosphere 9:469482.Google Scholar
13. Haque, A., Weisgerber, I., Kotzias, D., and Klein, W. 1977. Conversion of [14C] buturon in soil and leaching water under outdoor conditions. Pestic. Biochem. Physiol. 7:321331.Google Scholar
14. Haque, A., Weisgerber, I., Kotzias, D., Klein, W., and Korte, F. 1976. Contributions to ecological chemistry CXII. Balance of conversion of buturon-14C in wheat under outdoor conditions. J. Environ. Sci. Health 11:211223.Google Scholar
15. Hsu, T. S. and Bartha, R. 1979. Accelerated mineralization of two organophosphate insecticides in the rhizosphere. Appl. Environ. Microbiol. 37:3641.Google Scholar
16. Klein, W., Kohli, J., Weisgerber, I., and Korte, F. 1973. Fate of aldrin-14C in potatoes and soil under outdoor conditions. J. Agric. Food Chem. 21:152156.Google Scholar
17. Kohli, J., Weisgerber, I., Klein, W., and Korte, F. 1976. Contributions to ecological chemistry CVII. Fate of lindane-14C in lettuce, endives and soil under outdoor conditions. J. Environ. Sci. Health 11:2532.Google Scholar
18. Kohli, J., Zarif, S., Weisgerber, I., Klein, W., and Korte, F. 1973. Fate of aldrin-14C in sugarbeets and soil under outdoor conditions. J. Agric. Food Chem. 21:855857.Google Scholar
19. Mittelstaedt, W. and Führ, F. 1975. Mineralization and uptake of the herbicidal compound isocarbamide. Pflanzenschutz-Nachr. Bayer 28:353358.Google Scholar
20. Mittelstaedt, W. and Führ, F. 1975. Application of isocarbamide to sugarbeets – distribution in the soil and uptake by the plant. Pflanzenschutz-Nachr. Bayer 28:359369.Google Scholar
21. Mittelstaedt, W. and Führ, F. 1977. Verhalten von Propineb in bewachsenem und unbewachsenem Boden. Land Forsch. 30:221230.Google Scholar
22. Mittelstaedt, W. and Führ, F. 1981. [3-14C]Metamitron-Vorauflaufspritzung zu Zuckerrüben im Freilandlysimeterversuch. Radioaktivitätsbilanz in Zuckerrüben, Folgekulturen und Böden. Land. Forsch. SH37:666676.Google Scholar
23. Mittelstaedt, W. and Führ, F. 1984. Degradation of dinocap in three german soils. J. Agric. Food Chem. 32:11511155.Google Scholar
24. Mückenhausen, E. 1977. Entstehung, Eigenschaften und Systematik der Boden der Bundesrepublik Deutschland. DLG-Verlag, Frankfurt.Google Scholar
25. Müller, L., Mittelstaedt, W., Pfitzner, J., Führ, F., and Jarcyzk, H. J. 1983. [3-14C] metamitron in sugarbeets after pre-emergence application in a lysimeter study. Pestic. Biochem. Physiol. 19: 254261.CrossRefGoogle Scholar
26. Nash, R. G., Beall, M. L., and Harris, W. G. 1977. Toxaphene and 1,1,1-trichloro-2,2-bis(P-chlorophenyl)ethane (DDT) losses from cotton in an agroecosystem chamber. J. Agric. Food Chem. 25:336341.Google Scholar
27. Prestel, D., Weisgerber, I., Klein, W., and Korte, F. 1976. Beiträge zur ökologischem Chemie CXXI. Bilanz der Verteilung und Umwandlung von Metribuzin-14C (Sencor) in Kartoffeln, Möhren und Boden unter Freilandbedingungen. Chemosphere 2:137144.Google Scholar
28. Rovira, A. D. 1973. Zones of exudation along plant roots and spatial distribution of microorganisms in the rhizosphere. Pestic. Sci. 4:361366.Google Scholar
29. Sandrock, K., Bieniek, D., Klein, W., and Korte, F. 1974. Beiträge zur ökologischen Chemie LXXXVI. Isolierung und Strukturaufklärung von Kelevan-14C-Metaboliten und Bilanz in Kartoffeln und Boden. Chemosphere 5:199204.CrossRefGoogle Scholar
30. Schuphan, I. 1977. Zum Metabolismus von Phenylharnstoff-Herbiziden. VI. Geschlossene Kultursysteme für die Bilanzierung markierter Pestizide nach Anwendung bei Kulturpflanzen. Chemosphere 6:510.Google Scholar
31. Seibert, K. and Führ, F. 1984. Der Einfluss des Wassergehaltes auf den Atrazin-Abbau im Boden. Z. Pflanzenernaehr. Bodenkd. 147:485496.Google Scholar
32. Seibert, K., Führ, F., and Cheng, H. H. 1982. Experiments on the degradation of atrazine in the maize-rhizosphere. Pages 137166 in Proc. EWRS, Symp. Theory and Practice of the Use of Soil Applied Herbicides. Paris.Google Scholar
33. Seibert, K., Führ, F., and Mittelstaedt, W. 1982. Experiments on the influence of roots and soils on 2,4-D degradation. Landw. Forsch. 35:513.Google Scholar
34. Sotiriou, N., Weisgerber, I., Klein, W., and Korte, F. 1976. Beiträge zur ökologischen Chemie CXVI. Verteilung und Umwandlung von Imugan-14C in Boden und höheren Pflanzen unter Freilandbedingungen. Chemosphere 1:5360.Google Scholar
35. Steffens, W. and Wieneke, J. 1978. Problems involved in balance and metabolism studies with 14C-labeled pesticides in plant and soil. Pages 574586 in Proc. Int. Symp., Improving Crop and Animal Productivity by Nuclear and Allied Techniques. New Delhi, India.Google Scholar
36. Steffens, W. and Wieneke, J. 1981. Verhalten and Verbleib des 14C-markierten Mehltaufungizids Fluotrimazol in Pflanzen und Boden. I. Radioaktivitätsverteilung in der benhandelten Sommergerste und im Boden von Freilandlysimetern sowie Aufnahme durch nicht behandeltey Fruchtfolgepflanzen. Z. PflKrankh. PflSchutz 88:343354.Google Scholar
37. Weinmann, W. and Schinkel, K. 1976. Unterlagen zum Verhalten von Pflanzenschutzmitteln im Boden im Rahmen des Zulassungsverfahrens. Merkblatt Nr. 36 der Biol. Bundesanstalt, F.R.G. Google Scholar
38. Weisgerber, I., Kohli, J., Kaul, R., Klein, W., and Korte, F. 1974. Fate of aldrin-14C in maize, wheat, and soils under outdoor conditions. J. Agric. Food Chem. 22:609612.Google Scholar
39. Wieneke, J. and Steffens, W. 1981. Verhalten und Verbleib des 14C-markierten Mehltaufungizids Fluotrimazol in Pflanze und Boden. II. Extraktion und Auftrennung der radioaktiven Substanzen sowie Identifizierung des Hauptmetaboliten. Z. PflKrankh. PflSchutc 88:385399.Google Scholar