Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T09:25:12.613Z Has data issue: false hasContentIssue false

An Ala205Val Substitution in Acetohydroxyacid Synthase of Eastern Black Nightshade (Solanum ptychanthum) Reduces Sensitivity to Herbicides and Feedback Inhibition

Published online by Cambridge University Press:  20 January 2017

Jamshid Ashigh
Affiliation:
Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada
François J. Tardif*
Affiliation:
Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada
*
Corresponding author's E-mail: [email protected]

Abstract

Twelve populations of eastern black nightshade from different locations in Ontario are resistant to imazethapyr. This study aimed at determining the molecular basis of resistance in these populations and the activity of the resistant acetohydroxyacid synthase (AHAS) enzyme compared to that of the sensitive AHAS in response to different herbicides and branched-chain amino acid concentration. The results of partial AHAS sequencing indicated that all resistant populations had a cytosine331 to thymine substitution coding for an alanine205 to valine substitution. In vitro AHAS enzyme assays of one resistant population showed that the specific activity of the resistant enzyme was 56% less than that of the susceptible enzyme. AHAS from the resistant population was 72-, 70-, and 64-fold less sensitive than that of the susceptible population to imazethapyr, imazamox, and primisulfuron, respectively. Furthermore, the resistant enzyme was less sensitive to feedback inhibition from branched-chain amino acids compared to the susceptible enzyme. Results confirmed that resistance in resistant populations of eastern black nightshade was conferred by target-site modification and that the Ala205Val substitution alters the kinetics and regulation of branched-chain amino acid biosynthesis.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackley, J. A., Hatzios, K. K., and Wilson, H. P. 1999. Absorption, translocation, and metabolism of rimsulfuron in black nightshade (Solanum nigrum), eastern black nightshade (Solanum ptycanthum), and hairy nightshade (Solanum sarrachoides). Weed Technol. 13:151156.Google Scholar
Ashigh, J. and Tardif, F. J. 2006. ALS-inhibitor resistance in populations of eastern black nightshade (Solanum ptycanthum) from Ontario. Weed Technol. 20:308314.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosin, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270:1738117385.Google Scholar
Boutsalis, P., Karotam, J., and Powles, S. B. 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii . Pestic. Sci. 55:507516.Google Scholar
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. BioChem. 72:248254.CrossRefGoogle ScholarPubMed
Chong, C. K. and Choi, J. D. 2000. Amino acid residues conferring herbicide tolerance in tobacco acetolactate synthase. Biochem. Biophys. Res. Commun. 279:462467.Google Scholar
Devine, M. D. and Eberlein, C. V. 1997. Physiological, biochemical and molecular aspects of herbicide resistance based on altered target sites. Pages 159185. in Roe, R.M., Burton, J.D., Kuhr, R.J. eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam I.O.S. Google Scholar
Duggleby, R. G. and Pang, S. S. 2000. Acetohydroxyacid synthase. J. Biochem. Mol. Biol. 33:136.Google Scholar
Duggleby, R. G., Pang, S. S., Yu, H., and Guddat, L. W. 2003. Systematic characterization of mutations in yeast acetohydroxyacid synthase. Eur. J. BioChem. 270:28952904.Google Scholar
Eberlein, C. V., Guttieri, M. J., Berger, P. H., Fellman, J. K., Mallory-Smith, C. A., Thill, D. C., Baerg, R. J., and Belknap, W. R. 1999. Physiological consequences of mutation for ALS-inhibitor resistance. Weed Sci. 47:383392.Google Scholar
Eberlein, C. V., Guttieri, M. J., Mallory-Smith, C. A., Thill, D. C., and Baerg, R. J. 1997. Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola). Weed Sci. 45:212217.Google Scholar
Foes, M. J., Vigue, G., Stoller, E. W., and Tranel, P. J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci. 47:2027.CrossRefGoogle Scholar
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci. 43:175178.Google Scholar
Lee, Y. T. and Duggleby, R. G. 2001. Identification of the regulatory subunit of Arabidopsis thaliana acetohydroxyacid synthase and reconstruction with its catalytic subunit. Biochemistry. 40:68366844.Google Scholar
McNaughton, K. E., Letarte, J., Lee, E. A., and Tardif, F. J. 2005. Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii). Weed Sci. 53:1722.Google Scholar
Milliman, L. D., Riechers, D. E., Wax, L. M., and Simmons, F. W. 2003. Characterization of two biotypes of imidazolinone-resistant eastern black nightshade (Solanum ptycanthum). Weed Sci. 51:139144.Google Scholar
Mourad, G., Williams, D., and King, J. 1995. A double mutant allele, csr 1–4, of Arabidopsis thaliana encodes an acetolactate synthase with altered kinetics. Planta (Berl) 196:6468.Google Scholar
Preston, C., Stone, L. M., Rieger, M. A., and Baker, J. 2006. Multiple effect of a naturally occurring praline to threonine substitution within acetolactate synthase in two herbicide-resistant populations of Lactuca serriola . Pestic. Biochem. Physiol. 84:227235.Google Scholar
Ray, T. B. 1984. Site of action of chlorsulfuron. Plant Physiol. 75:827831.Google Scholar
Roux, F., Matejicek, A., and Reboud, X. 2005. Response of Arabidopsis thaliana to 22 ALS inhibitors: base line toxicity and cross-resistance of csr1–1 and csr1–2 resistant mutants. Weed Res. 45:220227.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 141170. in Powles, S.B., Holtum, J.A.M. eds. Herbicide Resistance in Plants, Biology and Biochemistry. Boca Raton, FL: Lewis.Google Scholar
Seefeldt, D. L., Jensen, J. E., and Fuerst, E. P. 1995. Log–logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.Google Scholar
Singh, B. K., Newhouse, K. E., Stidham, M. A., and Shaner, D. L. 1988a. Imidazolinones and acetohydroxyacid synthase from plants. Pages 357371. in Barak, Z., Chipman, D.M., Schloss, J.V. eds. Biosynthesis of Branched Chain Amino Acids. New York: VCH.Google Scholar
Singh, B. K., Stidham, M. A., and Shaner, D. L. 1988b. Assay of acetohydroxyacid synthase. Anal. BioChem. 171:173179.Google Scholar
Sprague, C. L., Stoller, E. W., Wax, L. M., and Horak, M. J. 1997. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistant to selected ALS-inhibiting herbicides. Weed Sci. 45:192197.Google Scholar
Subramanian, M. V., Loney-Gallant, V., Dias, J. M., and Mireles, L. C. 1991. Acetolactate synthase inhibiting herbicides bind to the regulatory site. Plant Physiol. 96:310313.Google Scholar
Tardif, F. J., Rajcan, I., and Costea, M. 2006. A mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii . New Phytol. 169:251264.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.Google Scholar
Volenberg, D. S., Stoltenberg, D. E., and Boerboom, C. M. 2000. Solanum ptycanthum resistance to acetolactate synthase inhibitors. Weed Sci. 48:399401.Google Scholar
Westerfelt, W. W. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem. 161:495502.Google Scholar
Whaley, C. M., Wilson, H. P., and Westwood, J. H. 2007. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci. 55:8390.Google Scholar
White, A. D., Graham, M. A., and Owen, M. D. K. 2003. Isolation of acetolactate synthase homologs in common sunflower. Weed Sci. 51:845853.Google Scholar
Woodworth, A. R., Bernasconi, P., Subramanian, M. V., and Rosen, B. A. 1996. A second naturally occurring point mutation confers broad based tolerance to acetolactate synthase inhibitors. Plant Physiol. 111:S105.Google Scholar