Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T08:47:50.976Z Has data issue: false hasContentIssue false

Alteration of Diphenamid Metabolism in Tomato by Ozone

Published online by Cambridge University Press:  12 June 2017

Richard H. Hodgson
Affiliation:
Metabolism and Radiation Res. Lab., North Central Region, Agr. Res. Serv., U. S. Dep. of Agr., Fargo, ND 58102
D. Stuart Frear
Affiliation:
Metabolism and Radiation Res. Lab., North Central Region, Agr. Res. Serv., U. S. Dep. of Agr., Fargo, ND 58102
H. R. Swanson
Affiliation:
Metabolism and Radiation Res. Lab., North Central Region, Agr. Res. Serv., U. S. Dep. of Agr., Fargo, ND 58102
L. A. Regan
Affiliation:
Metabolism and Radiation Res. Lab., North Central Region, Agr. Res. Serv., U. S. Dep. of Agr., Fargo, ND 58102

Abstract

Fumigation of tomato (Lycopersicon esculentum Mill. ‘Sheyenne’) with low levels of O3 had little effect on root absorption, translocation, or conversion of diphenamid (N,N-dimethyl-2,2-diphenylacetamide) to water-soluble conjugates. However, the proportion of specific conjugates was markedly altered in O3-fumigated plants. Twenty-four hours after treatment, the predominant conjugates formed in nonfumigated and fumigated tomato were the β-glucoside (MDAG), and the β-gentiobioside (MDAGB), respectively, of N-hydroxymethyl-N-methyl-2,2-diphenylacetamide. The ratio MDAG:MDAGB was 8.2:1.0 in nonfumigated tissue and 0.6:1.0 in O3-fumigated tissue. This marked shift toward production of the more polar MDAGB was accompanied by a trend toward increased production of methanol-insoluble residues. A compound having limited stability was extracted from tomato; its probable structure was N-hydroxymethyl-N-methyl-2,2-diphenylacetamide (MODA). It is a postulated intermediate in the formation of MDAG and MDAGB from diphenamid.

Type
Research Article
Copyright
Copyright © 1973 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bingham, S. W. and Shaver, R. 1971. Uptake, translocation, and degradation of diphenamid in plants. Weed Sci. 19:639643.CrossRefGoogle Scholar
2. Blankendaal, M., Hodgson, R. H., Davis, D. G., Hoerauf, R. A., and Shimabukuro, R. H. 1972. Growing plants without soil for experimental use. U. S. Dep. Agr., Agr. Res. Serv., Misc. Publ. 1251. 17 pp.Google Scholar
3. Bligh, E. G. and Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911917:CrossRefGoogle ScholarPubMed
4. Bonner, W. A., Kubitshek, M. J., and Drisko, R. W. 1952. A suggestion on the application of Hudson's isorotation rules. J. Amer. Chem. Soc. 74:50825086.CrossRefGoogle Scholar
5. Butler, G. W., Bailey, R. W., and Kennedy, L. D. 1965. Studies on the glucosidase “linamarase.” Phytochemistry 4:369381.CrossRefGoogle Scholar
6. Carney, A. W. and Stephenson, G. R. 1972. Ozoneherbicide interactions in crop plants. Abstr., Weed Sci. Soc. Amer., No. 134.Google Scholar
7. Conchie, J., Levvy, G. A., and Marsh, C. A. 1957. Methyl and phenyl glycosides of the common sugars. Advan. Carbohyd. Chem. 12:157187.Google ScholarPubMed
8. Craker, L. E. 1971. Ethylene production from ozone injured plants. Environ. Pollut. 1:299304.CrossRefGoogle Scholar
9. Davidson, J. D. and Oliverio, V. T. 1967. Tritium and carbon 14 by oxygen flask combustion. Atomlight No. 60:110.Google Scholar
10. Dimler, R. J., Schaefer, W. C., Wise, C. S., and Rist, C. E. 1952. Quantitative paper chromatography of D-glucose and its oligosaccharides. Anal. Chem. 24:14111414.CrossRefGoogle Scholar
11. Dugger, W. M. and Ting, I. P. 1970. Physiological and biochemical effect of air pollution oxidants on plants. Advan. Phytochem. 3:3158.Google Scholar
12. Durden, J. A. Jr., Stollings, H. W., Casida, J. E., and Slade, M. 1970. The synthesis of hydroxymethylcarbamates. J. Agr. Food Chem. 18:459466.CrossRefGoogle ScholarPubMed
13. Eyjolfsson, R. 1970. Recent advances in the chemistry of cyanogenic glycosides. Progr. Chem. Org. Natur. Prod. 28:74108.Google ScholarPubMed
14. Frear, D. S., Hodgson, R. H., Shimabukuro, R. H., and Still, G. G. 1972. Behavior of herbicides in plants. Advan. in Agron. 24:327378.CrossRefGoogle Scholar
15. Frear, D. S. and Swanson, H. R. 1972. New metabolites of monuron in excised cotton leaves. Phytochemistry 11: 19191929.CrossRefGoogle Scholar
16. Frear, D. S., Swanson, H. R., and Tanaka, F. S. 1969. N-demethylation of substituted 3-(phenyl)-1-methylureas: Isolation and characterization of a microsomal mixed function oxidase from cotton. Phytochemistry 8:21572169.CrossRefGoogle Scholar
17. Gal, A. E. 1968. Separation and identification of monosaccharides from biological materials by thin-layer chromatography. Anal. Biochem. 24:452461.CrossRefGoogle ScholarPubMed
18. Golab, T., Herberg, R. J., Parka, S. J., and Tepe, J. B. 1966. The metabolism of carbon-14 diphenamid in strawberry plants. J. Agr. Food Chem. 14:592596.CrossRefGoogle Scholar
19. Hassid, W. Z. and Ballou, C. E. 1957. Oligosaccharides. Page 493 in Pigman, W., ed. The Carbohydrates. Academic Press, N. Y. Google Scholar
20. Heck, W. W. 1968. Factors influencing expression of oxidant damage to plants. Annu. Rev. Phytopathol. 6: 165188.CrossRefGoogle Scholar
21. Heck, W. W., Dunning, J. A., and Johnson, H. 1968. Design of a simple plant exposure chamber. Nat. Center Air Pollut. Contr. Publ. APTD-68-6, 24 pp.Google Scholar
22. Hill, A. C., Pack, M. R., Treshow, M., Downs, R. J., and Transtrum, L. G. 1961. Plant injury induced by ozone. Phytopathology 51:356363.Google Scholar
23. Hodgson, R. H. 1970. Alteration of triazine metabolism by ozone. Abstr. Weed. Sci. Soc. Amer., No. 28.Google Scholar
24. Hodgson, R. H. 1971. Alteration of diphenamid metabolism by ozone. Abstr. Weed Sci. Soc. Amer., No. 86.Google Scholar
25. Hodgson, R. H., Dusbabek, K. E., and Hoffer, B. L. 1973. Diphenamid metabolism in tomato. Abstr. Weed Sci. Soc. Amer., No. 141.Google Scholar
26. Jacobson, J. S. and Hill, A. H. 1970. Recognition of air pollution injury to vegetation: a pictorial atlas. Air Pollut. Contr. Assoc. 41 pp.Google Scholar
27. Johnson, G. S., Ruliffson, W. S., and Cooks, R. G. 1970. An approach to oligosaccharide sequencing by mass spectrometry. Chem. Communications 1970:587589.CrossRefGoogle Scholar
28. Kesner, C. D. and Ries, S. K. 1967. Diphenamid metabolism in plants. Science 155:210211.CrossRefGoogle Scholar
29. Krzeminski, L. F., Cox, B. L., and Neff, A. W. 1972. Separation and identification of carbon-14 diphenamid metabolites using chromatographic techniques. Anal. Chem. 44:126130.CrossRefGoogle Scholar
30. Ledbetter, M. C., Zimmerman, P. W., and Hitchcock, A. E. 1959. The histopathological effects of ozone on plant foliage. Contrib. Boyce Thompson Inst. Plant Res. 20: 275282.Google Scholar
31. Lee, T. T. 1966. Chemical regulation of ozone susceptibility in Nicotiana tabacum. Can. J. Bot. 44:487496.CrossRefGoogle Scholar
32. Lemin, A. J. 1966. Absorption, translocation, and metabolism of diphenamid-1-14C by tomato seedlings. J. Agr. Food Chem. 14:109111.CrossRefGoogle Scholar
33. McMahon, R. E. and Sullivan, H. R. 1965. The metabolism of the herbicide diphenamid in rates. Biochem. Pharmacol. 14:10851092.CrossRefGoogle Scholar
34. Miller, L. P. 1940. Formation of β-o-chlorophenyl-gentiobioside in gladiolus corms from absorbed o-chlorophenol. Contrib. Boyce Thompson Inst. Plant Res. 11:271279.Google Scholar
35. Miller, L. P. 1941. Induced formation of a β-gentiobioside in tomato roots. Contrib. Boyce Thompson Inst. Plant Res. 11:387391.Google Scholar
36. Miller, L. P. 1941. Formation of β-2,2,2-trichloroethylgentiobioside in tomato plants grown in media containing chloral hydrate, trichloroethanol, or chloral cyanohydrin. Contrib. Boyce Thompson Inst. Plant Res. 12:1523.Google Scholar
37. Miller, L. P. 1941. Simultaneous formation of a β-gentiobioside and a β-glucoside in gladiolus corms treated with chemicals. Contrib. Boyce Thompson Inst. Plant Res. 12:163166.Google Scholar
38. Miller, L. P. 1943. High yields of β-2-trichloroethyl-D-glucoside and β-2-trichloroethylgentiobioside from tobacco plants treated with chloral hydrate. Contrib. Boyce Thompson Inst. Plant Res. 13:185200.Google Scholar
39. National Academy of Sciences. 1968. Principles of plant and animal pest control. Vol. 2, Weed Control. Nat. Acad. Sci., Washington, D. C. 471 pp.Google Scholar
40. Nettleship, L. and Slaytor, M. 1971. Ruine: a glucosidic β-carboline from Peganum harmala . Phytochemistry 10:231234.CrossRefGoogle Scholar
41. Rich, S. 1964. Ozone damage to plants. Annu. Rev. Phytopathol. 2:253266.CrossRefGoogle Scholar
42. Schroeder, L. R. and Green, J. W. 1966. Koenigs-Knorr syntheses with mercuric salts. J. Chem. Soc. (c). 530531.CrossRefGoogle Scholar
43. Schultz, D. P. and Tweedy, B. G. 1971. Uptake and metabolism of N,N-dimethyl-2,2-diphenylacetamide in resistant and susceptible plants. J. Agr. Food Chem. 19: 3640.CrossRefGoogle Scholar
44. Schultz, D. P. and Tweedy, B. G. 1972. The effect of light and humidity on absorption and degradation of diphenamid in tomatoes. J. Agr. Food Chem. 20:1013.CrossRefGoogle ScholarPubMed
45. Shimabukuro, R. H. 1967. Atrazine metabolism and herbicidal selectivity. Plant Physiol. 42:12691276.CrossRefGoogle ScholarPubMed
46. Stanek, J., Cerny, M., Kocourek, J., and Pacek, J. 1963. The Monosaccharides (transl. by Mayer, K.). Academic Press, N. Y., and Czechoslovak Acad. Sci., Prague. 1006 pp.Google Scholar
47. Swanson, C. A. and El-Shishiny, D. E. H. 1958. Translocation of sugars in the concord grape. Plant Physiol. 33:3337.CrossRefGoogle ScholarPubMed
48. Tanaka, F. S., Swanson, H. R., and Frear, D. S. 1972. An unstable hydroxymethyl intermediate formed in the metabolism of 3-(4-chlorophenyl)-1-methylurea in cotton. Phytochemistry 11:27012708.CrossRefGoogle Scholar
49. Taylor, O. C. 1968. Effects of oxidant air pollutants. J. Occup. Med. 10:485499.CrossRefGoogle ScholarPubMed
50. Ting, I. P. and Dugger, W. M. Jr. 1968. Factors affecting ozone sensitivity and susceptibility of cotton plants. J. Air Pollut. Contr. Assoc. 18:810813.CrossRefGoogle ScholarPubMed
51. Yokota, T., Takahashi, N., Noboru, M., and Tamura, S. 1969. Structures of new gibberellin glucosides in immature seeds of Pharbitis nil . Tetrahedron Lett. 25:20812084.CrossRefGoogle Scholar