Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T04:03:26.764Z Has data issue: false hasContentIssue false

Agricultural Weeds in Glyphosate-Resistant Cropping Systems in the United States

Published online by Cambridge University Press:  20 January 2017

Bryan G. Young*
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
David J. Gibson
Affiliation:
Department of Plant Biology, Center for Ecology, Southern Illinois University, Carbondale, IL 62901-6509
Karla L. Gage
Affiliation:
Department of Plant Biology, Center for Ecology, Southern Illinois University, Carbondale, IL 62901-6509
Joseph L. Matthews
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
David L. Jordan
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
Micheal D. K. Owen
Affiliation:
Agronomy Department, Iowa State University, Ames, IA 50011
David R. Shaw
Affiliation:
Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762
Stephen C. Weller
Affiliation:
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
Robert G. Wilson
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska, Scottsbluff, NE 69361
*
Corresponding author's E-mail: [email protected]

Abstract

A segment of the debate surrounding the commercialization of genetically engineered (GE) crops, such as glyphosate-resistant (GR) crops, focuses on the theory that implementation of these traits is an extension of the intensification of agriculture that will further erode the biodiversity of agricultural landscapes. A large field-scale study was conducted in 2006 in the United States on 156 different field sites with a minimum 3-yr history of GR corn, cotton, or soybean in the cropping system. The impact of cropping system, crop rotation, frequency of using the GR crop trait, and several categorical variables on emerged weed density and diversity was analyzed. Species richness, evenness, Shannon's H′, proportion of forbs, erect growth habit, and C3 species diversity were all greater in agricultural sites that lacked crop rotation or were in a continuous GR crop system. Rotating between two GR crops (e.g., corn and soybean) or rotating to a non-GR crop resulted in less weed diversity than a continuous GR crop. The composition of the weed flora was more strongly related to location (geography) than any other parameter. The diversity of weed flora in agricultural sites with a history of GR crop production can be influenced by several factors relating to the specific method in which the GR trait is integrated (cropping system, crop rotation, GR trait rotation), the specific weed species, and the geographical location. The finding that fields with continuous GR crops demonstrated greater weed diversity is contrary to arguments opposing the use of GE crops. These results justify further research to clarify the complexities of crops grown with herbicide-resistance traits, or more broadly, GE crops, to provide a more complete characterization of their culture and local adaptation.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Altieri, M. A. 2005. The myth of coexistence: why transgenic crops are not compatible with agroecologically based systems of production. Bull. Sci. Tech. Soc. 25:361371.Google Scholar
Ammann, K. 2005. Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops. Trends Biotechnol. 23:388394.Google Scholar
Andersson, T. N. and Milberg, P. 1998. Weed flora and the relative importance of site, crop, crop rotation, and nitrogen. Weed Sci. 46:3038.Google Scholar
Beckie, H. J. 2006. Herbicide-resistant weeds: management tactics and practices. Weed Technol. 20:793814.Google Scholar
Benton, T. G., Vickery, J. A., and Wilson, J. D. 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18:182188.Google Scholar
Cerabolini, B., Pierce, S., Luzzaro, A., and Ossola, A. 2009. Species evenness affects ecosystem processes in situ via diversity in the adaptive strategies of dominant species. Plant Ecol. 207:333345.Google Scholar
Cerdeira, A. L. and Duke, S. O. 2006. The current status and environmental impacts of glyphosate-resistant crops: a review. J. Environ. Qual. 35:16331658.Google Scholar
Champion, G. T., May, M. J., Bennett, S., Brooks, D. R., Clark, S. J., Daniels, R. E., Firbank, L. G., Haughton, A. J., Hawes, C., Heard, M. S., Perry, J. N., Randle, Z., Rossall, M. J., Rothery, P., Skellern, M. P., Scott, R. J., Squire, G. R., and Thomas, M. R. 2003. Crop management and agronomic context of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos. Trans. R. Soc. Lond. B 358:18011818.Google Scholar
Crookston, R. K. 2006. A top 10 list of developments and issues impacting crop management and ecology during the past 50 years. Crop Sci. 46:22532262.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.Google Scholar
Donald, P. F., Sanderson, F. J., Burfield, I. J., and van Bommel, F. P. J. 2006. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric. Ecosyst. Environ. 116:189196.Google Scholar
Doucet, C., Weaver, S. E., Hamill, A. S., and Zhang, J. 1999. Separating the effects of crop rotation from weed management on weed density and diversity. Weed Sci. 47:729735.Google Scholar
Gianessi, L. P. 2005. Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manage. Sci. 61:241245.Google Scholar
Gibson, D. J., Millar, K., Delong, M., Connolly, J., Kirwan, L., Wood, A. J., and Young, B. G. 2008. The weed community affects yield and quality of soybean [Glycine max (L.) Merr.]. J. Sci. Food Agric. 88:371381.Google Scholar
Gibson, K. D., Johnson, W. G., and Hillger, D. E. 2005. Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol. 19:10651070.Google Scholar
Givens, W. A., Shaw, D. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M. D. K., and Jordan, D. 2009. A grower survey of herbicide use patterns in glyphosate-resistant cropping systems. Weed Technol. 23:156161.Google Scholar
Gulden, R. H., Sikkema, P. H., Hamill, A. S., Tardif, F. J., and Swanton, C. J. 2009. Conventional vs. glyphosate-resistant cropping systems in Ontario: weed control, diversity, and yield. Weed Sci. 57:665672.Google Scholar
Gulden, R. H., Sikkema, P. H., Hamill, A. S., Tardif, F. J., and Swanton, C. J. 2010. Glyphosate-resistant cropping systems in Ontario: multivariate and nominal trait-based weed community structure. Weed Sci. 58:278288.Google Scholar
Hawes, C., Haughton, A. J., Osborne, J. L., Roy, D. B., Clark, S. J., Perry, J. N., Rothery, P., Bohan, D. A., Brooks, D. R., Champion, G. T., Dewar, A. M., Heard, M. S., Woiwod, I. P., Daniels, R. E., Young, M. W., Parish, A. M., Scott, R. J., Firbank, L. G., and Squire, G. R. 2003. Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos. Trans. R. Soc. Lond. B 358:18991913.Google Scholar
Heap, I. 2011. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/In.asp. Accessed: December 30, 2011.Google Scholar
Heard, M. S., Hawes, C., Champion, G. T., Clark, S. J., Firbank, L. G., Haughton, A. J., Parish, A. M., Perry, J. N., Rothery, P., Roy, D. B., Scott, R. J., Skellern, M. P., Squire, G. R., and Hill, M. O. 2003a. Weeds in fields with contrasting conventional and genetically modified herbicide-tolerant crops: II. Effects on individual species. Philos. Trans. R. Soc. Lond. B 358:18331846.Google Scholar
Heard, M. S., Hawes, C., Champion, G. T., Clark, S. J., Firbank, L. G., Haughton, A. J., Parish, A. M., Perry, J. N., Rothery, P., Scott, R. J., Skellern, M. P., Squire, G. R., and Hill, M. O. 2003b. Weeds in fields with contrasting conventional and genetically modified herbicide-tolerant crops: I. Effects on abundance and diversity. Philos. Trans. R. Soc. Lond. B 358:18191832.Google Scholar
Johnson, B. and Hope, A. 2000. GM crops and equivocal environmental benefits. Nature Biotechnol. 18:242.Google Scholar
Johnson, W. G., Davis, V. M., Kruger, G. R., and Weller, S. C. 2009. Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Eur. J. of Agron. 31:162172.Google Scholar
Kruger, G. R., Johnson, W. G., Weller, S. C., Owen, M. D. K., Shaw, D. R., Wilcut, J. W., Jordan, D. L., Wilson, R. G., Bernards, M. L., and Young, B. G. 2009. U.S. grower views on problematic weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol. 23:162166.Google Scholar
Légère, A., Stevenson, F. C., and Benoit, D. L. 2005. Diversity and assembly of weed communities: contrasting responses across cropping systems. Weed Res. 45:303315.Google Scholar
Legleiter, T. R. and Bradley, K. W. 2008. Glyphosate and multiple resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci. 56:582587.Google Scholar
Liebman, M. and Dyck, E. 1993. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 3:92122.Google Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. 2006. SAS for Mixed Models. 2nd ed. Cary, NC SAS Institute.Google Scholar
Matson, P. A., Parton, W. J., Power, A. G., and Swift, M. J. 1997. Agricultural intensification and ecosystem properties. Science 277:504509.Google Scholar
McLaughlin, A. and Mineau, P. 1995. The impact of agricultural practices on biodiversity. Agric. Ecosyst. Environ. 55:201212.Google Scholar
Menalled, F. D., Gross, K. L., and Hammond, M. 2001. Weed aboveground and seedbank community responses to agricultural management systems. Ecol. Appl. 11:15861601.Google Scholar
Osten, V. A., Walker, S. R., Storrie, A., Widderick, M., Moylan, P., Robinson, G. R., and Galea, K. 2007. Survey of weed flora and management relative to cropping practices in the north-eastern grain region of Australia. Aust. J. Exp. Agric. 47:5770.Google Scholar
Perry, J. N., Rothery, P., Clark, S. J., Heard, M. S., and Hawes, C. 2003. Design, analysis and statistical power of the Farm-Scale Evaluations of genetically modified herbicide-tolerant crops. J. Appl. Ecol. 40:1731.Google Scholar
Pollard, J. M., Sellers, B. A., and Smeda, R. J. 2004. Differential response of common ragweed to glyphosate. Hartzler, R. G., ed. 27 in Proc. North Central Weed Sci. Soc. Champaign, IL North Central Weed Science Society.Google Scholar
Potts, G. E., Ewald, J. A., and Aebischer, N. J. 2010. Long-term changes in the flora of the cereal ecosystem on the Sussex Downs, England, focusing on the years 1968–2005. J. Appl. Ecol. 47:215226.Google Scholar
Pretty, J. 2007. Agricultural sustainability: concepts, principles and evidence. Phil. Trans. R. Soc. Lond. B 363:447465.Google Scholar
Quinn, G. P. and Keough, M. J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge, UK Cambridge University Press. 520 p.Google Scholar
Scursoni, J., Forcella, F., Gunsolus, J., Owen, M., Oliver, R., Smeda, R., and Virdine, R. 2006. Weed diversity and soybean yield with glyphosate management along a north-south transect in the United States. Weed Sci. 54:713719.Google Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., Kendig, J. A., and Ellersieck, M. R. 2003. Comparative growth for six Amaranthus species in Missouri. Weed Sci. 51:329333.Google Scholar
Shaw, D. R., Owen, M. D., Dixon, P. M., Weller, S. C., Young, B. G., Wilson, R. G., and Jordan, D. L. 2011. Benchmark study on glyphosate-resistant cropping systems in the United States. Part 1: introduction to 2006–2008. Pest Manage. Sci. 67:741746.Google Scholar
Squire, G. R., Brooks, D. R., Bohan, D. A., Champion, G. T., Daniels, R. E., Haughton, A. J., Hawes, C., Heard, M. S., Hill, M. O., May, M. J., Osborne, J. L., Perry, J. N., Roy, D. B., Woiwod, I. P., and Firbank, L. G. 2003. On the rationale and interpretation of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos. Trans. R. Soc. Lond. B 358:17791799.Google Scholar
Thomas, A. G. 1985. Weed survey system used in Saskatchewan for cereal and oilseed crops. Weed Sci. 33:3443.Google Scholar
Thomas, A. G. and Frick, B. L. 1993. Influence of tillage systems on weed abundance in southwestern Ontario. Weed Technol. 7:699705.Google Scholar
Tilman, D. 1998. The greening of the green revolution. Nature 396:211212.Google Scholar
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature 418:671677.Google Scholar
Tuesca, D., Puricelli, E., and Papa, J. C. 2001. A long-term study of weed flora shifts in different tillage systems. Weed Res. 41:369382.Google Scholar
Ulber, L., Steinmann, H. H., Klimek, S., and Isselstein, J. 2009. An on-farm approach to investigate the impact of diversified crop rotations on weed species richness and composition in winter wheat. Weed Res. 49:534543.Google Scholar
[USDA] U.S. Department of Agriculture. 2009. Acreage Report. http://usda.mannlib.cornell.edu/usda/current/Acre/Acre-06-30-2009.pdf. Accessed: August 23, 2009.Google Scholar
U.S. National Arboretum. 2003. USDA Plant Hardiness Zone Map. USDA Miscellaneous Publication No. 1475. http://www.usna.usda.gov/Hardzone/ushzmap.html. Accessed: December 30, 2011.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:703705.Google Scholar
Walker, E. R. and Oliver, L. R. 2008. Weed seed production as influenced by glyphosate applications at flowering across a weed complex. Weed Technol. 22:318325.Google Scholar
Webster, T. M. and Coble, H. D. 1997. Changes in the weed species composition of the southern United States: 1974 to 1995. Weed Technol. 11:308317.Google Scholar
Werth, J. A., Preston, C., Taylor, I. N., Charles, G. W., Roberts, G. N., and Baker, J. 2008. Managing the risk of glyphosate resistance in Australian glyphosate-resistant cotton production systems. Pest Manage. Sci. 64:417421.Google Scholar
Wilson, R. G., Young, B. G., Matthews, J. L., Weller, S. C., Johnson, W. G., Jordan, D. L., Owen, M. D., Dixon, P. M., and Shaw, D. R. 2011. Benchmark study on glyphosate-resistant cropping systems in the United States. Part 4: weed management practices and effects on weed populations and soil seedbanks. Pest Manage. Sci. 67:771780.Google Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20:301307.Google Scholar