Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T04:23:47.577Z Has data issue: false hasContentIssue false

Acetolactate Synthase Target-Site Mutations and Single Nucleotide Polymorphism Genotyping in ALS-Resistant Kochia (Kochia scoparia)

Published online by Cambridge University Press:  20 January 2017

Suzanne I. Warwick*
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Eastern Cereal and Oilseed Research Centre, K. W. Neatby Building, Central Experimental Farm, Ottawa, ON K1A 0C6, Canada
Renlin Xu
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Eastern Cereal and Oilseed Research Centre, K. W. Neatby Building, Central Experimental Farm, Ottawa, ON K1A 0C6, Canada
Connie Sauder
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Eastern Cereal and Oilseed Research Centre, K. W. Neatby Building, Central Experimental Farm, Ottawa, ON K1A 0C6, Canada
Hugh J. Beckie
Affiliation:
AAFC, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
*
Corresponding author's E-mail: [email protected]

Abstract

The molecular basis for acetolactate synthase (ALS)–inhibitor resistance was determined for 6 susceptible (HS) and 24 resistant (HR) kochia populations from western Canada. The latter included 3 HR populations from Alberta (AB), 3 from Manitoba (MB), and 18 from Saskatchewan (SK). HR plants survived application of the ALS-inhibitor herbicide thifensulfuron–tribenuron mixture in the greenhouse. Most of the HR populations were heterogeneous and contained both HR and HS individuals. The molecular basis for resistance was determined in 273 HR individuals by sequencing the ALS gene (2,270 base pair [bp]) or by conducting a TaqMan genotyping assay developed in this study using real-time polymerase chain reaction (PCR) for single nucleotide polymorphism (SNP) 1709, where a G to T substitution resulted in a Leu for Trp substitution at amino acid position 574 (Trp574Leu mutation). A total of 16 SNPs were identified in the ALS gene sequences (0.7% polymorphism), 5 of which resulted in amino acid changes that confer resistance to ALS-inhibiting herbicides. The SNPs correspond to three target-site mutations: Pro197 (SNPs 565 and 566), Asp376 (SNP 1116), and Trp574 (SNPs 1708 and 1709). The Trp574Leu mutation was predominant (189 HR plants). The next most common mutation was the highly variable residue Pro197 (44 HR plants) with substitution by one of nine amino acids. The least-frequent were Asp376Glu (9 plants) and Trp574Arg (3 plants) substitutions. The presence of two ALS target-site mutations was found in 30 individual kochia plants, the first report from field-selected weed populations. These include combinations Pro197 + Trp574 (23 plants) and Pro197 + Asp376 (7 plants). The detection of Pro197, Asp376, and Trp574 mutations, as well as both combinations, from geographically separate regions suggests multiple origins of these mutations.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bedbrook, J. R., Chaleff, R. S., Falco, S. C., Mazur, B. J., Somerville, C. R., Yadev, N. S., inventors, and Du Pont de Nemours and Company, assignee E. I. 1995 Jan 3. Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase. U.S. patent 5,378,824. Cited by: Tranel, P. J. and T. R. Wright. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned. Weed Sci. 50:700712.Google Scholar
Beckie, H., Brenzil, C., and Holzgang, G. 2007. Herbicide Resistance Testing: 1996–2006. Results of Samples Submitted to the Crop Protection Lab, Saskatchewan Agriculture and Food. Saskatoon, Saskatchewan Agriculture and Agri-Food Canada. 22 p.Google Scholar
Beckie, H. J., Leeson, J. Y., Thomas, A. G., and Brenzil, C. A. 2006. Saskatchewan Weed Survey of Herbicide-Resistant Weeds. Saskatoon, Saskatchewan Agriculture and Agri-Food Canada Weed Survey Series Publ. 06–1. 67. p.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270:1738117385.CrossRefGoogle ScholarPubMed
Boutsalis, P., Karotam, J., and Powles, S. B. 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii . Pestic. Sci. 55:507516.Google Scholar
Chodová, D. and Mikulka, J. 2000. Identification of resistance to imazapyr and cross resistance to selected sulfonylurea herbicides in Kochia scoparia . Z. Pflanzenkr. Pflanzenschutz. 17 (Special Issue):383388.Google Scholar
Christoffers, M. J., Nandula, V. K., Howatt, K. A., and Wehking, T. R. 2006. Target-site resistance to acetolactate synthase inhibitors in wild mustard (Sinapis arvensis). Weed Sci. 54:191197.Google Scholar
Corbett, C. L. and Tardif, F. J. 2006. Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: a review. Pest Manag. Sci. 62:584597.Google Scholar
Devine, M. D. and Shukla, A. 2000. Altered target sites as a mechanism of herbicide resistance. Crop Prot. 19:881889.Google Scholar
Duggleby, R. G., McCourt, J. A., and Guddat, L. W. 2008. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Physiol. Biochem. 46:309324.Google Scholar
Duggleby, R. G. and Pang, S. S. 2000. Acetohydroxyacid synthase. J. Biochem. Mol. Biol. 33:136.Google Scholar
Eberlein, C. V. and Fore, Z. Q. 1984. Kochia biology. Weeds Today. 15:57.Google Scholar
Foes, M. J., Liu, L., Vigue, G., Stroller, E. W., Wax, L. M., and Tranel, P. J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci. 47:2027.Google Scholar
Forcella, F. 1985. Spread of kochia in the northwestern United States. Weeds Today. 16:46.Google Scholar
Giancola, S., McKhann, H. I., Bérard, A., et al. 2006. Utilization of the three high-throughput SNP genotyping methods, the GOOD assay, Amplifuor and TaqMan, in diploid and polyploid plants. Theor. Appl. Genet. 112:11151124.Google Scholar
Green, J. M. 2007. Review of glyphosate and ALS-inhibiting herbicide crop resistance and resistant weed management. Weed Technol. 21:547558.Google Scholar
Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci. 40:670676.Google Scholar
Guttieri, M. J., Eberlein, C. V., and Souza, E. J. 1998. Inbreeding coefficients of field populations of Kochia scoparia using chlorsulfuron resistance as a phenotypic marker. Weed Sci. 46:521525.Google Scholar
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci. 43:175178.Google Scholar
Hardenbol, P., Yu, F., Belmont, J., et al. 2007. Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res. 15:12691275.Google Scholar
Heap, I. 2008. The International Survey of Herbicide Resistant weeds. http://www.weedscience.org. Accessed: January 2008.Google Scholar
Ibdah, M., Bar-Ilan, A., Livnah, O., Schloss, J. V., Barak, Z., and Chipman, D. M. 1996. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry. 35:1628216291.Google Scholar
Kolkman, J. M., Slabaugh, M. B., Bruniard, J. M., et al. 2004. Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor. Appl. Genet. 109:11471159.Google Scholar
Lassmann, T. and Sonnhammer, E. L. 2005. Kalign—an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics. 6:298.Google Scholar
Leeson, J. Y., Thomas, A. G., Hall, L. M., Brenzil, C., Andrews, T., Brown, K. R., and Van Acker, R. C. 2005. Prairie Weed Surveys of Cereal, Oilseed and Pulse Crops from the 1970s to the 2000s. Saskatoon, Saskatchewan: Agriculture and Agri-Food Canada Weed Survey Series Publ. 05–1. 395 p.Google Scholar
McNaughton, K. E., Letarte, J., Lee, E. A., and Tardif, F. J. 2005. Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii). Weed Sci. 53:1722.Google Scholar
Morrison, I. N. and Devine, M. D. 1994. Herbicide resistance in the Canadian prairie provinces: five years after the fact. Phytoprotection. 75 (Suppl):516.CrossRefGoogle Scholar
Patzoldt, W. L. and Tranel, P. J. 2002. Molecular analysis of cloransulam resistance in a population of giant ragweed. Weed Sci. 50:299305.Google Scholar
Patzoldt, W. L. and Tranel, P. J. 2007. Multiple ALS mutations confer herbicide resistance in waterhemp (Amaranthus tuberculatus). Weed Sci. 55:421428.Google Scholar
Patzoldt, W. L., Tranel, P. J., Alexander, A. L., and Schmitzer, P. R. 2001. A common ragweed population resistant to cloransulam-methyl. Weed Sci. 49:485490.Google Scholar
Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.CrossRefGoogle Scholar
Ranade, K., Chang, M. S., Ting, C. T., et al. 2001. High-throughput genotyping with single nucleotide polymorphisms. Genome Res. 11:12621268.Google Scholar
Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93:5561.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 83139. in Powles, S. B. and Holtum, J. A. M. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL CRC.Google Scholar
Salava, J., Chodová, D., and Mikulka, J. 2004. Molecular basis of acetolactate synthase-inhibitor resistance in Czech biotypes of kochia. J. Plant Dis. Prot. 19:915919.Google Scholar
Sathasivan, K., Haughn, G. W., and Murai, N. 1990. Nucleotide sequence of a mutant acetolactate synthase gene from imidazolinone resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Res. 18:2188.Google Scholar
Siminszky, B., Coleman, N. P., and Naveed, M. 2005. Denaturing high-performance liquid chromatography efficiently detects mutations of the acetolactate synthase gene. Weed Sci. 53:146152.Google Scholar
Stallings, G. P., Thill, D. C., Mallory-Smith, C. A., and Shafi, B. 1995. Pollen-mediated gene flow of sulfonylurea-resistant kochia (Kochia scoparia). Weed Sci. 43:95102.CrossRefGoogle Scholar
Tan, M. K. and Medd, R. W. 2002. Characterisation of the acetolactate synthase (ALS) gene of Raphanus raphanistrum L. and the molecular assay of mutations associated with herbicide resistance. Plant Sci. 163:195200.Google Scholar
Tan, S. Y., Evans, R. R., Dahmer, M. L., Singh, B. K., and Shaner, D. L. 2005. Imidazolinone-tolerant crops: history, current status and future. Pest Manag. Sci. 61:246257.Google Scholar
Thill, D. C., Mallory-Smith, C. A., Saari, L. L., Cotterman, J. C., Primiani, M. M., and Saladini, J. L. 1991. Sulfonylurea herbicide resistant weeds: discovery, distribution, biology, mechanism, and management. Pages 115128. in Caseley, J. C., Cussans, G. W., and Atkins, R. K. Herbicide Resistance in Weeds and Crops. Oxford, UK Butterworth-Heinemann.Google Scholar
Thompson, C. R., Thill, D. C., Mallory-Smith, C. A., and Shafii, B. 1994. Characterization of chlorosulfuron resistant and susceptible kochia (Kochia scoparia). Weed Technol. 8:470476.Google Scholar
Tranel, P. J., Jiang, W., Patzoldt, W. L., and Wright, T. R. 2004. Intraspecific variability of the acetolactate synthase gene. Weed Sci. 52:236241.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned. Weed Sci. 50:700712.Google Scholar
Tranel, P. J., Wright, T. R., and Heap, I. M. 2007. ALS Mutations from Herbicide-Resistant Weeds. http://www.weedscience.org. Accessed: January 2008.Google Scholar
Uchino, A., Ogata, S., Kohara, H., Yoshida, S., Yoshioka, T., and Watanabe, H. 2007. Molecular basis of diverse responses to acetolactate synthase-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides . Weed Biol. Manag. 7:8996.Google Scholar
Uchino, A. and Watanabe, H. 2002. Mutations in the acetolactate synthase genes of sulfonylurea-resistant biotypes of Lindernia spp. Weed Biol. Manag. 2:104109.Google Scholar
Veldhuis, L. J., Hall, L. M., O'Donovan, J. T., Dyer, W., and Hall, J. C. 2000. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J. Agric. Food Chem. 48:29862990.Google Scholar
Wagner, J., Haas, H. U., and Hurle, K. 2002. Identification of ALS inhibitor-resistant Amaranthus biotypes using polymerase chain reaction amplification of specific alleles. Weed Res. 42:280286.Google Scholar
Warwick, S. I., Sauder, C., and Beckie, H. J. 2005. Resistance in Canadian biotypes of wild mustard (Sinapis arvensis) to acetolactate synthase inhibiting herbicides. Weed Sci. 53:631639.Google Scholar
Whaley, C. M., Wilson, H. P., and Westwood, J. H. 2007. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci. 55:8390.Google Scholar
Yu, Q., Zhang, X. Q., Hashem, A., Walsh, M. J., and Powles, S. B. 2003. ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Sci. 51:831838.CrossRefGoogle Scholar