Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T17:31:43.752Z Has data issue: false hasContentIssue false

Soybean Canopy and Tillage Effects on Emergence of Palmer Amaranth (Amaranthus palmeri) from a Natural Seed Bank

Published online by Cambridge University Press:  20 January 2017

Prashant Jha*
Affiliation:
University of Arkansas, Department of Crop, Soil and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
University of Arkansas, Department of Crop, Soil and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
*
Corresponding author's E-mail: [email protected]

Abstract

Field experiments were conducted in 2004, 2005, and 2006, at Pendleton, SC, to determine the effects of soybean canopy and tillage on Palmer amaranth emergence from sites with a uniform population of Palmer amaranth. In 2006, the effect of soybean canopy was evaluated only in no-tillage plots. Palmer amaranth emerged from May 10 through October 23, May 13 through September 2, and April 28 through August 25 in 2004, 2005, and 2006, respectively. Two to three consistent emergence periods occurred from early May through mid-July. Shallow (10-cm depth) spring tillage had minimal influence on the cumulative emergence of Palmer amaranth. Increase in light interception following soybean canopy formation was evident by early July, resulting in reduced Palmer amaranth emergence, especially in no-tillage conditions. In no-tillage plots, from 32 or 33 d after soybean emergence through senescence, Palmer amaranth emergence was reduced by 73 to 76% in plots with soybean compared with plots without soybean. Emergence of Palmer amaranth was favored by high-thermal soil amplitudes (10 to 16 C) in the absence of soybean. Of the total emergence during a season, > 90% occurred before soybean canopy closure. The seedling recruitment pattern of Palmer amaranth from this research suggests that, although Palmer amaranth exhibits an extended emergence period, cohorts during the peak emergence periods from early May to mid-July need greater attention in weed management.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Addae, P. C., Collis-George, N., and Peterson, C. J. 1991. Over-riding effects of temperature and soil strength of wheat seedlings under minimum and conventional tillage. Field Crops Res. 28:103116.Google Scholar
Anderson, R. L. and Nielsen, D. C. 1996. Emergence pattern of five weeds in the central great plains. Weed Technol. 10:744749.Google Scholar
Batlla, D., Kruk, B. C., and Benech-Arnold, R. L. 2000. Very early detection of canopy presence by seeds through perception of subtle modifications in R ∶ FR signals. Funct. Ecol. 14:195202.CrossRefGoogle Scholar
Benvenuti, S. 1995. Soil light penetration and dormancy of jimsonweed (Datura stramonium) seeds. Weed Sci. 43:389393.Google Scholar
Blevins, R. L. and Frye, W. W. 1993. Conservation tillage: an ecological approach to soil management. Adv. Agron. 51:3378.Google Scholar
Buhler, D. D. 1992. Population dynamics and control of annual weeds in corn (Zea mays) as influenced by tillage. Weed Sci. 40:241248.CrossRefGoogle Scholar
Buhler, D. D., Hartzler, R. G., and Forcella, F. 1998. Weed seed bank dynamics: implications to weed management. J. Crop. Prod. 1:145168.CrossRefGoogle Scholar
Buhler, D. D., Mester, T. C., and Kohler, K. A. 1996. The effect of maize residues and tillage on emergence of Setaria faberi, Abutilon theophrasti, Amaranthus retroflexus, and Chenopodium album . Weed Res. 36:153165.CrossRefGoogle Scholar
Cardina, J., Herms, C. P., and Doohan, D. J. 2002. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 50:448460.CrossRefGoogle Scholar
Cardina, J., Regnier, E., and Harrison, K. 1991. Long-term tillage effects on seed banks in three Ohio soils. Weed Sci. 39:186194.Google Scholar
Clements, D. R., Benoit, D. L., Murphy, S. D., and Swanton, C. J. 1996. Tillage effects of weed seed return and seed bank composition. Weed Sci. 44:314322.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.CrossRefGoogle Scholar
Ehleringer, J. 1983. Ecophysiology of Amaranthus palmeri, a Sonoran desert summer annual. Oecologia. 57:107112.Google Scholar
Fenner, M. 1980. The induction of a light requirement in Bidens pilosa seeds by leaf canopy shade. New Phytol. 84:103106.Google Scholar
Fernald, M. L. 1950. Gray's Manual of Botany. 8th ed. New York American Book. 602.Google Scholar
Forcella, F., Benech-Arnold, R. L., Sanchez, R., and Ghersa, C. M. 2000. Modelling seedling emergence. Field Crop Res. 67:123139.CrossRefGoogle Scholar
Forcella, F., Wilson, R. G., Renner, K. A., Dekker, J., Harvey, R. G., Alm, D. A., Buhler, D. D., and Cardina, J. A. 1992. Weed seedbanks of the U.S. Corn Belt: magnitude, variation, emergence, and application. Weed Sci. 40:636644.CrossRefGoogle Scholar
Fortin, M. C. and Pierce, F. J. 1990. Development and growth effects of crop residues on corn. Agron. J. 82:710715.CrossRefGoogle Scholar
Gallagher, R. S. and Cardina, J. 1998. Phytochrome-mediated Amaranthus germination, I: effect of seed burial and germination temperature. Weed Sci. 46:4852.CrossRefGoogle Scholar
Ghorbani, R., Seel, W., and Leifert, C. 1999. Effects of environmental factors on germination and emergence of Amaranthus retroflexus . Weed Sci. 47:505510.CrossRefGoogle Scholar
Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research. New York J. Wiley. 783.Google Scholar
Gossett, B. J., Murdock, E. C., and Toler, J. E. 1992. Resistance of Palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technol. 6:587591.Google Scholar
Guo, P. and Al-Khatib, K. 2003. Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (Amaranthus palmeri), and common waterhemp (A. rudis). Weed Sci. 51:869875.CrossRefGoogle Scholar
Hartzler, R. G., Buhler, D. G., and Stoltenberg, D. E. 1999. Emergence characteristics of four annual weed species. Weed Sci. 47:578584.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.Google Scholar
Jha, P., Norsworthy, J. K., Riley, M. B., and Bridges, W. Jr. 2008a. Acclimation of Palmer amaranth (Amaranthus palmeri) to shading. Weed Sci. 56:729734.Google Scholar
Jha, P., Norsworthy, J. K., Riley, M. B., and Bridges, W. Jr. 2008b. Influence of glyphosate timing and row width on Palmer amaranth (Amaranthus palmeri) and pusley (Richardia spp.) demographics in glyphosate-resistant soybean. Weed Sci. 56:408415.Google Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1987. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35:199204.CrossRefGoogle Scholar
Keeley, P. E. and Thullen, R. J. 1989. Growth and competition of black nightshade (Solanum nigrum) and Palmer amaranth (Amaranthus palmeri) with cotton (Gossypium hirsutum). Weed Sci. 37:326334.CrossRefGoogle Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybean (Glycine max). Weed Sci. 42:523527.CrossRefGoogle Scholar
Leon, R. G. and Owen, M. D. K. 2003. Regulation of weed seed dormancy through light and temperature interactions. Weed Sci. 51:752758.CrossRefGoogle Scholar
Leon, R. G. and Owen, M. D. K. 2006. Tillage systems and seed dormancy effects on common waterhemp (Amaranthus tuberculatus) seedling emergence. Weed Sci. 54:10371044.CrossRefGoogle Scholar
Litch, M. A. and Al-Kaisi, M. 2005. Strip-tillage on seedbed soil temperature and other soil physical properties. Soil Tillage Res. 80:233249.Google Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. Jr. 2001. Interference of Palmer amaranth in corn. Weed Sci. 49:202208.CrossRefGoogle Scholar
Mohler, C. L. 1993. A model of the effects of tillage on emergence of weed seedlings. Ecol. Appl. 3:5373.CrossRefGoogle Scholar
Montgomery, D. C., Runger, G. C., and Hubele, N. F. 2001. Engineering Statistic. 2nd ed. New York J. Wiley. 448480.Google Scholar
Myers, M. M., Curran, W. S., VanGessel, M. J., Calvin, D. D., Mortensen, D. A., Majek, B. A., Karsten, H. D., and Roth, G. W. 2004. Predicting weed seedling emergence for eight annual species in the northeastern United States. Weed Sci. 52:913919.CrossRefGoogle Scholar
Nandula, V., Bond, R., Poston, D., Koger, C., Reddy, K., and Bond, J. 2009. Glyphosate-resistant Palmer amaranth from Mississippi. Abstr. Weed Sci. Soc. Am. 71 [Abstract].Google Scholar
Norsworthy, J. K. 2004. Soybean canopy formation effects on pitted morningglory (Ipomoea lacunosa), common cocklebur (Xanthium strumarium), and sicklepod (Senna obtusifolia) emergence. Weed Sci. 52:954960.CrossRefGoogle Scholar
Norsworthy, J. K. and Oliveira, M. J. 2007. Tillage and soybean canopy effects on common cocklebur (Xanthium strumarium) emergence. Weed Sci. 55:474480.CrossRefGoogle Scholar
Norsworthy, J. K., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Response of northeastern Arkansas Palmer amaranth (Amaranthus palmeri) accessions to glyphosate. Weed Sci. 22:408413.Google Scholar
Oryokot, J. O. E., Murphy, S. D., and Swanton, C. J. 1997. Effect of tillage and corn on pigweed (Amaranthus spp.) seedling emergence and density. Weed Sci. 45:120126.CrossRefGoogle Scholar
SAS 2000. SAS User's Guide. Version 8. Cary, NC SAS Institute.Google Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance. Weed Technol. 22:119123.CrossRefGoogle Scholar
Sattin, M., Zuin, M. C., and Sartorato, I. 1994. Light quality beneath field-grown maize, soybean, and wheat canopies—red ∶ far red variations. Physiol. Plant. 91:322328.CrossRefGoogle Scholar
Steckel, L. E., Sprague, C. L., Stoller, E. W., and Wax, L. M. 2004. Temperature effects on germination of nine Amaranthus species. Weed Sci. 52:217221.CrossRefGoogle Scholar
Swanton, C. J. and Murphy, S. D. 1996. Weed science beyond the weeds: the role of integrated weed management (IWM) in agroecosystem health. Weed Sci. 44:437445.CrossRefGoogle Scholar
Taylorson, R. B. and Borthwick, H. A. 1969. Light filtration by foliar canopies: significance for light-controlled weed seed germination. Weed Sci. 17:4851.CrossRefGoogle Scholar
Thompson, K. and Grime, J. P. 1983. A comparative study of germination in response to diurnally fluctuating temperatures. J. Appl. Ecol. 20:141456.CrossRefGoogle Scholar
Webb, D. M., Smith, C. W., and Schulz-Schaeffer, J. 1987. Amaranth seedling emergence as affected by seedling depth and temperature on a thermogradient plate. Agron. J. 79:2326.CrossRefGoogle Scholar
Webster, T. M. and MacDonald, G. E. 2001. A survey of weeds in various crops in Georgia. Weed Technol. 15:771790.Google Scholar
Wright, S. R., Coble, H. D., Raper, C. D. Jr., and Rufty, T. W. Jr. 1999. Comparative responses of soybean (Glycine max), sicklepod (Senna obtusifolia), and Palmer amaranth (Amaranthus palmeri) to root zone and aerial temperatures. Weed Sci. 47:167174.Google Scholar