Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T17:02:19.424Z Has data issue: false hasContentIssue false

Southern Root-Knot Nematode (Meloidogyne incognita) Affects Common Cocklebur (Xanthium strumarium) Interference with Cotton

Published online by Cambridge University Press:  20 January 2017

Theodore M. Webster*
Affiliation:
Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA 31793-0748
Richard F. Davis
Affiliation:
Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA 31793-0748
*
Corresponding author's E-mail: [email protected]

Abstract

Southern Root-Knot nematode and common cocklebur interfere with cotton growth and yield. A greater understanding of the interaction of these pests with cotton growth and yield is needed for effective integrated pest management (IPM). An additive design was used in outdoor microplots with five common cocklebur densities (0, 1, 2, 4, and 8 plants per plot) growing in competition with cotton, with and without the presence of southern Root-Knot nematode. Differences in cotton height could not be detected among common cocklebur densities or nematode presence at 3 wk after transplanting (WAT); however, differences in crop height were observed at 5 WAT between nematode treatments. In the absence of nematodes, the relationship between cotton yield loss and common cocklebur density was described by a rectangular hyperbolic regression model (P < 0.0001). Maximum yield loss from common cocklebur in the absence of nematodes exceeded 80%. In the presence of nematodes, there was a linear relationship between cotton yield loss and common cocklebur density (P = 0.0506). The presence of nematodes at each common cocklebur density increased cotton yield loss 15 to 35%. Common cocklebur plant biomass was 25% greater in nematode treatments, likely because of the reduced competitiveness of the cotton plants in these plots. This study demonstrates that multiple pests can interact to cause an additive reduction in crop yield.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alston, D. G., Bradley, J. R., Coble, H. D., and Schmitt, D. P. 1991a. Impact of population density of Heterodera glycines on soybean canopy growth and weed competition. Plant Dis. 75:10161018.CrossRefGoogle Scholar
Alston, D. G., Bradley, J. R., Schmitt, D. P., and Coble, H. D. 1991b. Response of Helicoverpa zea (Lepidoptera, Noctuidae) populations to canopy development in soybean as influenced by Heterodera glycines (Nematoda, Heteroderidae) and annual weed population densities. J. Econ. Entomol. 84:267276.CrossRefGoogle Scholar
Alston, D. G., Schmitt, D. P., Bradley, J. R., and Coble, H. D. 1993. Multiple pest interactions in soybean—effects on Heterodera glycines egg populations and crop yield. J. Nematol. 25:4249.Google ScholarPubMed
Belair, G. and Benoit, D. L. 1996. Host suitability of 32 common weeds to Meloidogyne hapla in organic soils of southwestern Quebec. J. Nematol. 28:643647.Google ScholarPubMed
Buchanan, G. A. and Burns, E. R. 1971. Weed competition in cotton. II. Cocklebur and redroot pigweed. Weed Sci. 19:580582.CrossRefGoogle Scholar
Byrd, J. D. and Coble, H. D. 1991. Interference of common cocklebur (Xanthium strumarium) and cotton (Gossypium hirsutum). Weed Technol. 5:270278.CrossRefGoogle Scholar
Chen, J., Bird, G. W., and Renner, K. A. 1995. Influence of Heterodera glycines on interspecific and intraspecific competition associated with Glycine max and Chenopodium album . J. Nematol. 27:6369.Google ScholarPubMed
Cousens, R. 1991. Aspects of the design and interpretation of competition (interference) experiments. Weed Technol. 5:664673.CrossRefGoogle Scholar
Davidson, T. R. and Townshend, J. L. 1967. Some weed hosts of southern Root-Knot nematode Meloidogyne incognita . Nematologica. 13:452458.CrossRefGoogle Scholar
Davis, R. F. and May, O. L. 2005. Relationship between yield potential and percentage yield suppression caused by the southern Root-Knot nematode in cotton. Crop Sci. 45:23122317.CrossRefGoogle Scholar
Davis, R. F. and Webster, T. M. 2005. Relative host status of selected weeds and crops for Meloidogyne incognita and Rotylenchulus reniformis . J. Cotton Sci. 9:4146.Google Scholar
Davis, R. F., Webster, T. M., and Brenneman, T. B. 2006. Host status of tropical spiderwort (Commelina benghalensis) for nematodes. Weed Sci. 54:11371141.CrossRefGoogle Scholar
Ehwaeti, M. E., Fargette, M., Phillips, M. S., and Trudgill, D. L. 1999. Host status differences and their relevance to damage by Meloidogyne incognita . Nematology. 1:421432.CrossRefGoogle Scholar
Hussey, R. S. and Barker, K. R. 1973. A comparison of methods for collecting inocula for Meloidogyne spp., including a new technique. Plant Dis. Rep. 57:10251028.Google Scholar
Jenkins, W. R. 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis. Rep. 48:692.Google Scholar
Koenning, S. R., Coble, H. D., Bradley, J. R., Barker, K. R., and Schmitt, D. P. 1998. Effects of a low rate of aldicarb on soybean and associated pest interactions in fields infested with Heterodera glycines . Nematropica. 28:205211.Google Scholar
Koenning, S. R., Overstreet, C., Noling, J. W., Donald, P. A., Becker, J. O., and Fortnum, B. A. 1999. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. Suppl. J. Nematol. 31:567618.Google ScholarPubMed
Neary, P. E. and Majek, B. A. 1990. Common cocklebur (Xanthium strumarium) interference in snap beans (Phaseolus vulgaris). Weed Technol. 4:743748.CrossRefGoogle Scholar
Pantone, D. J. 1995. Replacement series analysis of the competitive interaction between a weed and a crop as influenced by a plant-parasitic nematode. Fundam. Appl. Nematol. 18:9397.Google Scholar
Patterson, D. T. and Flint, E. P. 1983. Comparative water relations, photosynthesis, and growth of soybean (Glycine max) and seven associated weeds. Weed Sci. 31:318323.CrossRefGoogle Scholar
Perkins, H. F., Hook, J. E., and Barbour, N. W. 1986. Soil Characteristics of Selected Areas of the Coastal Plain Experiment Station and ABAC Research Farms. Athens, GA University of Georgia. 62.Google Scholar
Ponce, R. G., Zancada, C., Verdugo, M., and Salas, L. 1995. The influence of the nematode Meloidogyne incognita on competition between Solanum nigrum and tomato. Weed Res. 35:437443.CrossRefGoogle Scholar
Queneherve, P., Chabrier, C., Auwerkerken, A., Topart, P., Martiny, B., and Marie-Luce, S. 2006. Status of weeds as reservoirs of plant parasitic nematodes in banana fields in Martinique. Crop Prot. 25:860867.CrossRefGoogle Scholar
Regnier, E. E. and Harrison, S. K. 1993. Compensatory responses of common cocklebur (Xanthium strumarium) and velvetleaf (Abutilon theophrasti) to partial shading. Weed Sci. 41:541547.CrossRefGoogle Scholar
Regnier, E. E. and Stoller, E. W. 1989. The effects of soybean (Glycine max) interference on the canopy architecture of common cocklebur (Xanthium strumarium), jimsonweed (Datura stramonium), and velvetleaf (Abutilon theophrasti). Weed Sci. 37:187195.CrossRefGoogle Scholar
Robbins, R. T., Oliver, L. R., and Mueller, A. J. 1990. Interaction among a nematode (Heterodera glycines), an insect, and three weeds in soybean. J. Nematol. 22:729734.Google ScholarPubMed
Royal, S. S., Brecke, B. J., and Colvin, D. L. 1997. Common cocklebur (Xanthium strumarium) interference with peanut (Arachis hypogaea). Weed Sci. 45:3843.CrossRefGoogle Scholar
Shurley, W. D. and Kemerait, R. C. 2005. Efficacy and economic analysis of nematode control strategies in Georgia. in. Proceedings of the Beltwide Cotton Conference. New Orleans, LA National Cotton Council and the Cotton Foundation. 401405.Google Scholar
Snipes, C. E., Buchanan, G. A., Street, J. E., and McGuire, J. A. 1982. Competition of common cocklebur (Xanthium pensylvanicum) with cotton (Gossypium hirsutum). Weed Sci. 30:553556.CrossRefGoogle Scholar
Stoller, E. W., Harrison, S. K., Wax, L. M., Regnier, E. E., and Nafziger, E. D. 1987. Weed interference in soybeans (Glycine max). Rev. Weed Sci. 3:155181.Google Scholar
Tedford, E. C. and Fortnum, B. A. 1988. Weed hosts of Meloidogyne arenaria and Meloidogyne incognita common in tobacco fields in South Carolina. Ann. Appl. Nematol. 2:102105.Google Scholar
Thomas, S. H., Schroeder, J., Kenney, M. J., and Murray, L. W. 1997. Meloidogyne incognita inoculum source affects host suitability and growth of yellow nutsedge and chile pepper. J. Nematol. 29:404410.Google ScholarPubMed
Thomas, S. H., Schroeder, J., and Murray, L. W. 2005. The role of weeds in nematode management. Weed Sci. 53:923928.CrossRefGoogle Scholar
Venkatesh, R., Harrison, S. K., and Riedel, R. M. 2000. Weed hosts of soybean cyst nematode (Heterodera glycines) in Ohio. Weed Technol. 14:156160.CrossRefGoogle Scholar
Webster, T. M. 2001. Weed survey—southern states: broadleaf crops subsection. Pages 244259. in Reynolds, D.B. ed. Proceedings of the Southern Weed Science Society. Volume 54. Biloxi, MS Southern Weed Science Society.Google Scholar
Wells, J. W., Abernathy, J. R., and Gipson, J. R. 1984. The effect of common cocklebur interference on cotton water relations. Pages 313. in French, C.M. ed. Proceedings of the Southern Weed Science Society. Volume 37. Hot Springs, AR Southern Weed Science Society.Google Scholar
Wong, A. T. S. and Tylka, G. L. 1994. Eight non-host weed species of Heterodera glycines in Iowa. Plant Dis. 78:365367.CrossRefGoogle Scholar
Zancada, M. C., Ponce, R. G., and Verdugo, M. 1998. Competition between Solanum nigrum and pepper in the presence of Meloidogyne incognita . Weed Res. 38:4753.CrossRefGoogle Scholar