Published online by Cambridge University Press: 12 June 2017
The effect of the bleaching and non-bleaching phenylpyridazinones, norflurazon [4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)-3(2H)-pyridazinone] and BAS 29095 [4,5-dimethoxy-2-phenyl-3(2H)-pyridazinone], on chlorophyll fluorescence of the green alga, Scenedesmus acutus, was investigated and compared to other bleaching herbicides, difunon3 [EMD-IT 5914, 5(dimethylamino-methylene)-2-oxo-4-phenyl-2,5-dihydrofuranecarbonitrile-(3)] and the diphenyl ether, oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene]. Following chlorophyll fluorescence during short-term cultivation in the presence of herbicides and comparing it to physiological parameters such as chlorophyll content and packed cell volume allowed for rapid screening to detect different primary herbicidal modes of action. Two primary bleaching effects caused by either inhibition of carotene biosynthesis (certain substituted pyridazinones and difunon) or peroxidative degradation of membrane lipids (certain diphenyl ethers) led to completely different fluorescence signals. Growth of algae in the presence of a carotene biosynthesis inhibitor resulted in a rapid rise to maximum fluorescence, followed by a single decay phase, whereas bleaching diphenyl ethers led to a rapid loss of total fluorescence. Non-bleaching phenylpyridazinones, which act as weak electron transport inhibitors, inhibited variable fluorescence. Detoxication during algal growth became evident by recovery of the fluorescence induction.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.