Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T17:10:56.920Z Has data issue: false hasContentIssue false

Seed dormancy: an update on terminology, physiological genetics, and quantitative trait loci regulating germinability

Published online by Cambridge University Press:  20 January 2017

Michael E. Foley*
Affiliation:
USDA-Agricultural Research Service, Plant Science Research, Biosciences Research Laboratory, Fargo, ND 58105-5674; [email protected]

Extract

Dormancy is a form of developmental arrest and is an adaptive trait that promotes the survival of many organisms. In flowering plants, dormancy occurs in seeds and vegetative propagules (Lang 1996). Seed dormancy increases the distribution of germination over time, thus enhancing the survival of plants in an ever-changing environment. Seed dormancy is of intrinsic interest to weed scientists because it is one of 12 adaptive characteristics associated with weeds (Baker 1974). The sporadic emergence of seedlings derived from populations of dormant and nondormant weed seeds in the soil (Benech-Arnold et al. 2000; Forcella et al. 2000) is a key factor that dictates the need to apply weed control measures repeatedly within, between, and across growing seasons. My objective in writing this paper is to provide weed scientists, advanced students, and others with limited background information, some recent findings concerning the physiological genetics of dormancy, and steps toward identifying genes that directly regulate seed dormancy and germination. Molecular aspects of dormancy and germination will not be covered here because they have been reviewed recently (Bewley 1997; Li and Foley 1997). Readers can obtain additional and more extensive information on the biology and ecology of seed dormancy and germination from several recent books and reviews (Baskin and Baskin 1998; Benech-Arnold et al. 2000; Bewley and Black 1994; Casal and Sánchez 1998; Cohn 1996, 1998; Fennell 1999; Forcella et al. 2000; Hilhorst 1995, 1998; Hilhorst and Toorop 1997; Kelley et al. 1992; Kigel and Galili 1995; Simpson 1990; Vleeshouwers et al. 1995).

Type
Review Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alonso-Blanco, C., Peeters, A.J.M., Koornneef, M., Lister, C., Dean, C., van den Bosch, N., Pot, J., and Kuiper, M.T.R. 1998. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J. 12:259271.Google Scholar
Amen, R. D. 1968. A model of seed dormancy. Bot. Rev. 34:131.Google Scholar
Anderson, J. A., Sorrells, M. E., and Tanksley, S. D. 1993. RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop. Sci. 33:453459.Google Scholar
Arias, I., Williams, P. M., and Bradbeer, J. W. 1976. Studies in seed dormancy IX. The role of gibberellin biosynthesis and the release of bound gibberellin in the post-chilling accumulation of gibberellin in seeds of Corylus avellana L. Planta 131:135139.Google Scholar
Bailey, P. C., McKibbin, R. S., Lenton, J. R., Holdsworth, M. J., Flintham, J. E., and Gale, M. D. 1999. Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor. Appl. Genet. 98:281284.Google Scholar
Baker, H. G. 1974. The evolution of weeds. Annu. Rev. Ecol. Syst. 5:124.Google Scholar
Ballard, T. O., Bauman, T. T., and Foley, M. E. 1996. Germination, viability, and protein changes during cold stratification of giant ragweed (Ambrosia trifida L.) seed. J. Plant Physiol. 149:229232.Google Scholar
Baskin, C. C. and Baskin, J. M. 1998. Seeds—Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego, CA: Academic Press. 666 p.Google Scholar
Baskin, J. M. and Baskin, C. C. 1985. The annual dormancy cycle in buried weed seeds: a continuum. BioScience 35:492498.Google Scholar
Bazzaz, F. A. 1970. Secondary dormancy in seeds of the common ragweed (Ambrosia artemisiifolia). Bull. Torrey Bot. Club 97:302305.Google Scholar
Beckie, H. J., Thomas, A. G., Légère, A., Kelner, D. J., Van Acker, R. C., and Meers, S. 1999. Nature, occurrence, and cost of herbicide-resistant wild oat (Avena fatua) in small-grain production areas. Weed Technol. 13:612625.Google Scholar
Benech-Arnold, R. L. and Sánchez, R. A. 1995. Modeling weed seed germination. Pages 545566 In Kigel, J. and Galili, G., eds. Seed Development and Germination. New York: Marcel Dekker.Google Scholar
Benech-Arnold, R. L., Sánchez, R. A., Forcella, F., Kruk, B. C., and Ghersa, C. M. 2000. Environmental control of dormancy in weed seed banks in soil. Field Crops Res. 67:105122.Google Scholar
Bennetzen, J. L. and Freeling, M. 1997. The unified grass genome: synergy in synteny. Genome Res. 7:301306.Google Scholar
Bewley, J. D. 1997. Seed germination and dormancy. Plant Cell 9:10551066.Google Scholar
Bewley, J. D. and Black, M. 1994. Seeds—Physiology of Development and Germination. New York: Plenum Press. 445 p.Google Scholar
Bianco, J., Garello, G., and Le Page-Degivry, M. T. 1994. Release of dormancy in sunflower embryos by dry storage: involvement of gibberellins and abscisic acid. Seed Sci. Res. 4:5762.Google Scholar
Botto, J. F., Scopel, A. L., Ballaré, C. L., and Sánchez, R. A. 1998. The effect of light during and after soil cultivation with different tillage implements on weed seedling emergence. Weed Sci. 46:351357.Google Scholar
Bradford, K. J. 1996. Population-based models describing seed dormancy behaviour: implications for experimental design and interpretation. Pages 313339 In Lang, G. A., ed. Plant Dormancy—Physiology, Biochemistry and Molecular Biology. Wallingford, Great Britain: CAB International.Google Scholar
Bradford, K. J. 1997. The hydrotime concept in seed germination and dormancy. Pages 349360 In Ellis, R. H., Black, M., Murdoch, A. J., and Hong, T. D., eds. Basic and Applied Aspects of Seed Biology. Boston: Kluwer Academic Publishers.Google Scholar
Bradford, K. J. and Trewavas, A. J. 1994. Sensitivity thresholds and variable time scales in plant hormone action. Plant Physiol. 105:10291036.Google Scholar
Briggs, D. E., Woods, J. L., and Favier, J. F. 1994. Drying and storage treatments for overcoming dormancy in malting barley. J. Inst. Brew. 100:271278.Google Scholar
Buhler, D. D., Liebman, M., and Obrycki, J. J. 2000. Theoretical and practical challenges to an IPM approach to weed management. Weed Sci. 48:274280.Google Scholar
Burrows, V. D. 1970. Yield and disease-escape potential of fall-sown oats possessing seed dormancy. Can. J. Plant Sci. 50:371377.Google Scholar
Cardina, J. and Sparrow, D. H. 1997. Temporal changes in velvetleaf (Abutilon theophrasti) seed dormancy. Weed Sci. 45:6166.Google Scholar
Carmichael, J. S. and Selbo, S. M. 1999. Ovule, embryo sac, embryo, and endosperm development in leafy spurge (Euphorbia esula). Can. J. Bot. 77:599610.Google Scholar
Casal, J. J. and Sánchez, R. A. 1998. Phytochromes and seed germination. Seed Sci. Res. 8:317329.Google Scholar
Cohn, M. A. 1996. Operational and philosophical decisions in seed dormancy research. Seed Sci. Res. 6:147153.Google Scholar
Cohn, M. A., ed. 1998. W-168 Symposium on Seed Biology and Technology: Applications and Advances. Seed Sci. Res. 8:77:149301.Google Scholar
Cranston, H. J., Johnson, R. R., Chaverra, M. E., and Dyer, W. E. 1999. Isolation and characterization of a cDNA encoding a sar-like monomeric GTP-binding protein in Avena fatua L. Plant Sci. 145:7581.Google Scholar
Davis, W. E. 1930. Primary dormancy, after-ripening, and the development of secondary dormancy in embryos of Ambrosia trifida . Am. J. Bot. 17:5876.Google Scholar
Debeaujon, I. and Koornneef, M. 2000. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol. 122:415424.Google Scholar
Debeaujon, I., Léon-Kloosterziel, K. M., and Koornneef, M. 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 122:403413.Google Scholar
Dekker, J., Dekker, B., Hilhorst, H., and Karssen, C. 1996. Weedy adaptation in Setaria spp. IV. Changes in the germinative capacity of S. faberi (Poaceae) embryos with development from anthesis to after abscission. Am. J. Bot. 83:979991.Google Scholar
Derkx, M.P.M. and Karssen, C. M. 1993a. Variability in light-, gibberellin- and nitrate requirement of Arabidopsis thaliana seeds due to harvest time and conditions of dry storage. J. Plant Physiol. 141:574582.Google Scholar
Derkx, M.P.M. and Karssen, C. M. 1993b. Effects of light and temperature on seed dormancy and gibberellin-stimulated germination in Arabidopsis thaliana: studies with gibberellin-deficient and -insensitive mutants. Physiol. Plant. 89:360368.Google Scholar
Derkx, M.P.M., Vermeer, E., and Karssen, C. M. 1994. Gibberellins in seeds of Arabidopsis thaliana: biological activities, identification and effects of light and chilling on endogenous levels. Plant Growth Regul. 15:223234.Google Scholar
Devos, K. M. and Gale, M. D. 1997. Comparative genetics in the grasses. Plant Mol. Biol. 35:315.Google Scholar
Devos, K. M. and Gale, M. D. 2000. Genome relationships: the grass model in current research. Plant Cell 12:637646.Google Scholar
Egley, G. H. 1989. Water-impermeable seed coverings as barriers to germination. Pages 207223 In Taylorson, R. B., ed. Recent Advances in the Development and Germination of Seeds. New York: Plenum Press.Google Scholar
Egley, G. H. 1995. Seed germination in soil: dormancy cycles. Pages 529543 In Kigel, J. and Galili, G., eds. Seed Development and Germination. New York: Marcel Dekker.Google Scholar
Egley, G. H., Paul, R. N., and Lax, A. R. 1986. Seed coat imposed dormancy: histochemistry of the region controlling onset of water entry into Sida spinosa L. Physiol. Plant. 67:320327.Google Scholar
Esashi, Y., Ogasawara, M., Górecki, R., and Leopold, A. C. 1993. Possible mechanisms of afterripening in Xanthium seeds. Physiol. Plant. 87:359364.Google Scholar
Fennell, A. 1999. Systems and approaches to studying dormancy: proceedings and introduction to the workshop. HortScience 34:11721173.Google Scholar
Fennimore, S. A., Nyquist, W. E., Shaner, G. E., Doerge, R. W., and Foley, M. E. 1999. A genetic model and molecular markers for wild oat (Avena fatua L.). Theor. Appl. Genet. 99:711718.Google Scholar
Flintham, J. E. 2000. Different genetic components control coat-imposed and embryo-imposed dormancy in wheat. Seed Sci. Res. 10:4350.Google Scholar
Foley, M. E. 1992. Effect of soluble sugars and gibberellic acid in breaking of dormancy of excised wild oat (Avena fatua) embryos. Weed Sci. 40:208214.Google Scholar
Foley, M. E. 1994. Temperature and water status of seed affect afterripening in wild oat (Avena fatua). Weed Sci. 42:200204.Google Scholar
Foley, M. E. and Fennimore, S. A. 1998. Genetic basis for seed dormancy. Seed Sci. Res. 8:173182.Google Scholar
Forcella, F., Benech-Arnold, R. L., Sánchez, R., and Ghersa, R. M. 2000. Modeling seedling emergence. Field Crops Res. 67:123139.Google Scholar
Forcella, F., Wilson, R. G., Dekker, J., et al. 1997. Weed seed bank emergence across the corn belt. Weed Sci. 45:6776.Google Scholar
Frary, A., Nesbitt, T. C., Frary, A., et al. 2000. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289:8588.Google Scholar
Frisby, J. W. and Seeley, S. D. 1993. Chilling of endodormant peach propagules: I. Seed germination and emergence. J. Am. Soc. Hort. Sci. 118:248252.Google Scholar
Furuya, M. 1993. Phytochromes: their molecular species, gene families and functions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:617645.Google Scholar
Garello, G. and Le Page-Degivry, M. T. 1999. Evidence for the role of abscisic acid in the genetic and environmental control of dormancy in wheat (Triticum aestivum L.). Seed Sci. Res. 9:219226.Google Scholar
Grappin, P., Bouinot, D., Sotta, B., Miginiac, E., and Jullien, M. 2000. Control of seed dormancy in Nicotiana plumbaginifolia: Post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210:279285.Google Scholar
Groot, S.P.C. and Karssen, C. M. 1987. Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants. Planta 171:525531.Google Scholar
Groot, S.P.C. and Karssen, C. M. 1992. Dormancy and germination of abscisic acid-deficient tomato seeds. Studies with the sitiens mutant. Plant Physiol. 99:952958.Google Scholar
Han, F., Kleinhofs, A., Ullrich, S. E., Kilian, A., Yano, M., and Sasaki, T. 1998. Synteny with rice: analysis of barley malting quality QTLs and rpg4 chromosome regions. Genome 41:373380.Google Scholar
Han, F., Ullrich, S. E., Chirat, S., et al. 1995. Mapping of β-glucan content and β-glucanase activity loci in barley grain and malt. Theor. Appl. Genet. 91:921927.Google Scholar
Han, F., Ullrich, S. E., Clancy, J. A., and Romagosa, I. 1999. Inheritance and fine mapping of a major barley seed dormancy QTL. Plant Sci. 143:113118.Google Scholar
Hartmann, K. M. and Nezadal, W. 1990. Photocontrol of weeds without herbicides. Naturwissenschaften 77:158163.Google Scholar
Harushima, Y., Yano, M., Shomura, A., et al. 1998. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479494.Google Scholar
Hay, J. R. and Cumming, B. G. 1959. A method for inducing dormancy in wild oats (Avena fatua L.). Weeds 7:3440.Google Scholar
Hayes, R. G. and Klein, W. H. 1974. Spectral quality influence of light during development of Arabidopsis thaliana plants in regulating seed germination. Plant Cell Physiol. 15:643653.Google Scholar
Hilhorst, H.W.M. 1995. A critical update on seed dormancy. I. Primary dormancy. Seed Sci. Res. 5:6173.Google Scholar
Hilhorst, H.W.M. 1998. The regulation of secondary dormancy. The membrane hypothesis revisited. Seed Sci. Res. 8:7790.Google Scholar
Hilhorst, H. M. and Bino, R. J. 1999. The Tomato Seed as a Model System to Study Seed Development and Germination: Current State of Progress. Abstract VI. International Workshop on Seed Biology. Mérida, México: J. Vasquez-Ramos and Rodriguez-Sortes, R. p. 28.Google Scholar
Hilhorst, H.W.M., Groot, S.P.C., and Bino, R. J. 1998. The tomato seed as a model system to study seed development and germination. Acta Bot. Neerl. 47:169183.Google Scholar
Hilhorst, H.W.M. and Karssen, C. M. 1988. Dual effect of light on the gibberellin- and nitrate-stimulated seed germination of Sisymbrium officinale and Arabidopsis thaliana . Plant Physiol. 86:591597.Google Scholar
Hilhorst, H.W.M. and Karssen, C. M. 1992. Seed dormancy and germination: The role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regul. 11:225238.Google Scholar
Hilhorst, H.W.M. and Toorop, P. E. 1997. Review on dormancy, germinability, and germination in crop and weed seeds. Pages 111165 in Sparks, D. L., ed. Advances in Agronomy. Volume 61. San Diego, CA: Academic Press.Google Scholar
Hoecker, U., Vasil, I. K., and McCarty, D. R. 1995. Integrated control of seed maturation and germination programs by activator and repressor functions of viviparous-1 of maize. Genes Dev. 9:24592469.Google Scholar
Hou, J. Q. and Simpson, G. M. 1992. After-ripening and phytochrome action in seeds of dormant lines of wild oat (Avena fatua). Physiol. Plant. 86:427432.Google Scholar
Jana, S., Acharya, N., and Naylor, J. M. 1979. Dormancy studies in seeds of Avena fatua . 10. On the inheritance of germination behavior. Can. J. Bot. 57:16631667.Google Scholar
Jana, S. and Naylor, J. M. 1982. Adaptation for herbicide tolerance in populations of Avena fatua . Can. J. Bot. 60:16111617.Google Scholar
Jana, S. and Thai, K. M. 1987. Patterns of changes of dormant genotypes in Avena fatua populations under different agricultural conditions. Can. J. Bot. 65:17411745.Google Scholar
Jansen, R. C. 1996. Complex plant traits: time for polygenic analysis. Trends Plant Sci. 1:8994.Google Scholar
Jones, H. D., Peters, N.C.B., and Holdsworth, M. J. 1997. Genotype and environment interact to control dormancy and differential expression of the VIVIPAROUS 1 homologue in embryos of Avena fatua . Plant J. 12:911920.Google Scholar
Karssen, C. M. 1982. Seasonal patterns of dormancy in weed seeds. Pages 244270 In Khan, A. A., ed. The Physiology and Biochemistry of Seed Development, Dormancy and Germination. New York: Elsevier Biomedical Press.Google Scholar
Karssen, C. M., Brinkhorst-van der Swan, D.L.C., Breekland, A. E., and Koornneef, M. 1983. Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157:158165.Google Scholar
Karssen, C. M. and Lacka, E. 1986. A revision of the hormone balance theory of seed dormancy: studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana . Pages 315323 In Bopp, M., ed. Plant Growth Substances. Berlin: Springer-Verlag.Google Scholar
Karssen, C. M., Zagórski, S., Kepczyn'ski, J., and Groot, S.P.C. 1989. Key role for endogenous gibberellins in the control of seed germination. Ann. Bot. 63:7180.Google Scholar
Keller, B. and Feuillet, C. 2000. Colinearity and gene density in grass genomes. Trends Plant Sci. 5:246251.Google Scholar
Kelly, K. M., Van Staden, J., and Ball, W. E. 1992. Seed coat structure and dormancy. Plant Growth Regul. 11:201209.Google Scholar
Khan, A. A. 1994. Induction of dormancy in nondormant seeds. J. Am. Soc. Hort. Sci. 119:408413.Google Scholar
Khan, M., Cavers, P. B., Kane, M., and Thompson, K. 1996. Role of the pigmented seed coat of proso millet (Panicum miliaceum L.) in imbibition, germination and seed persistence. Seed Sci. Res. 7:2125.Google Scholar
Kigel, J. and Galili, G. 1995. Seed Development and Germination. New York: Marcel Dekker. 853 p.Google Scholar
Koornneef, M., Alonso-Blanco, C., Bentsink, L., Blankestijin-de Vries, H., Debeaujon, I., Hanhart, C. J., Léon-Kloosterziel, L. M., Peeters, A.M.J., and Raz, V. 1999. The genetics of seed dormancy in Arabidopsis thaliana . Abstracts Second International Symposium on Plant Dormancy. Angers, France: J.-D. Viémont and Crabbé. pp, J. J. 1819.Google Scholar
Koornneef, M., Elgersma, A., Hanhart, C. J., van Loenen-Martinet, E. P., van Rijn, L., and Zeevaart, J.A.D. 1985. A gibberellin insensitive mutant of Arabidopsis thaliana . Physiol. Plant. 65:3339.Google Scholar
Koornneef, M., Jorna, M. L., Brinkhorst-van der Swan, D.L.C., and Karssen, C. M. 1982. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 61:385393.Google Scholar
Koornneef, M. and Karssen, C. M. 1994. Seed dormancy and germination. Pages 313334 In Koornneef, M. and Karssen, C. M., eds. Arabidopsis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Koornneef, M., Reuling, G., and Karssen, C. M. 1984. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana . Physiol. Plant. 61:377383.Google Scholar
Koornneef, M. and van der Veen, J. H. 1980. Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 58:257263.Google Scholar
Lang, G. A., ed. 1996. Plant Dormancy—Physiology, Biochemistry and Molecular Biology. Wallingford, Great Britain: CAB International. 386 p.Google Scholar
Lang, G. A., Early, J. D., Martin, G. C., and Darnell, R. L. 1987. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:371377.Google Scholar
Larson, S., Bryan, G., Dyer, W., and Blake, T. 1996. Evaluating gene effects of a major barley seed dormancy QTL in reciprocal backcross populations. J. Quant. Trait Loci 2:4.Google Scholar
Léon-Kloosterziel, K. M., Keijzer, C. J., and Koornneef, M. 1994. A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell 6:385392.Google Scholar
Léon-Kloosterziel, K. M., van de Bunt, G. A., Zeevaart, J.A.D., and Koornneef, M. 1996. Arabidopsis mutants with a reduced seed dormancy. Plant Physiol. 110:233240.Google Scholar
Leopold, A. C., Glenister, R., and Cohn, M. A. 1988. Relationship between water content and afterripening in red rice. Physiol. Plant. 74:659662.Google Scholar
Le Page-Degivry, M.-T., Barthe, P., and Garello, G. 1990. Involvement of endogenous abscisic acid in onset and release of Helianthus annuus embryo dormancy. Plant Physiol. 92:11641168.Google Scholar
Le Page-Degivry, M.-T. and Garello, G. 1992. In situ abscisic acid synthesis. Plant Physiol. 98:13861390.Google Scholar
Li, B. and Foley, M. E. 1997. Genetic and molecular control of seed dormancy. Trends Plant Sci. 2:384389.Google Scholar
Lijavetzky, D., Martínez, M. C., Carrari, F., and Hopp, H. E. 2000. QTL analysis and mapping of pre-harvest sprouting resistance in sorghum. Euphytica 112:125135.Google Scholar
Lin, S. Y., Sasaki, T., and Yano, M. 1998. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor. Appl. Genet. 96:9971003.Google Scholar
Mares, D. J. 1996. Dormancy in white wheat: mechanism and location of genes. Pages 179184 In Noda, K., ed. Pre-Harvest Sprouting in Cereals 1995. Osaka, Japan: Center for Academic Societies.Google Scholar
Martinez-García, J. F., Huq, E., and Quail, P. H. 2000. Direct targeting of light signals to a promoter element-bound transcription factor. Science 288:859863.Google Scholar
McCarty, D. R. 1995. Genetic control and integration of maturation and germination pathways in seed development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:7193.Google Scholar
McCouch, S. R. and Doerge, R. W. 1995. QTL mapping in rice. Trends Genet. 11:482487.Google Scholar
Meinke, D. W., Franzmann, L. H., Nickle, T. C., and Yeung, E. C. 1994. Leafy cotyledon mutants of Arabidopsis . Plant Cell 6:10491064.Google Scholar
Metzger, J. D. 1983. Role of endogenous plant growth regulators in seed dormancy of Avena fatua . II. Gibberellins. Plant Physiol. 73:791795.Google Scholar
Michelmore, R. W., Paran, I., and Kesseli, R. V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88:98289832.Google Scholar
Milberg, P., Andersson, L., and Thompson, K. 2000. Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Sci. Res. 10:99104.Google Scholar
Morris, C. F., Moffatt, J. M., Sears, R. G., and Paulsen, G. M. 1989. Seed dormancy and responses of caryopses, embryos, and calli to abscisic acid in wheat. Plant Physiol. 90:643647.Google Scholar
Morrison, I. N. and Dushnicky, L. 1982. Structure of the covering layers of the wild oat (Avena fatua) caryopsis. Weed. Sci. 30:352359.Google Scholar
Myers, S. P., Foley, M. E., and Nichols, M. B. 1997. Developmental differences between germinating afterripened and dormant excised Avena fatua L. embryos. Ann. Bot. 79:1923.Google Scholar
Nambara, E., Akazawa, T., and McCourt, P. 1991. Effects of the gibberellin biosynthetic inhibitor uniconazol on mutants of Arabidopsis . Plant Physiol. 97:736738.Google Scholar
Nambara, E., Naito, S., and McCourt, P. 1992. A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant J. 2:435441.Google Scholar
Naylor, J. M. and Simpson, G. M. 1961. Dormancy studies in seed of Avena fatua 2. A gibberellin-sensitive inhibitory mechanism in the embryo. Can. J. Bot. 39:281295.Google Scholar
Ni, B. and Bradford, K. J. 1993. Germination and dormancy of abscisic acid- and gibberellin-deficient mutant tomato (Lycopersicon esculentum) seeds—sensitivity of germination to abscisic acid, gibberellin, and water potential. Plant Physiol. 101:607617.Google Scholar
Nikolaeva, M. G. 1969. Physiology of Deep Dormancy in Seeds. Leningrad, USSR: Izdatel'stvo “Nauka”. [Translation from Russian by Z. Shapiro, NSF, Washington, DC]Google Scholar
Oberthur, L., Blake, T. K., Dyer, W. E., and Ullrich, S. E. 1995. Genetic analysis of seed dormancy in barley (Hordeum vulgare L.). J. Quant. Trait Loci. 1:5.Google Scholar
O’Donovan, J. T., Newman, J. C., Blackshaw, R. E., Harker, K. N., Derksen, D. A., and Thomas, G. A. 1999. Growth, competitiveness, and seed germination of triallate/difenzoquat-susceptible and -resistant wild oat populations. Can. J. Plant Sci. 79:303312.Google Scholar
Paterson, A. H., Lander, E. S., Hewitt, J. D., Peterson, S., Lincoln, S. E., and Tanksley, S. D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721726.Google Scholar
Paterson, A. H., Lin, Y.-R., Li, Z., Schertz, K. F., Doebley, J. F., Pinson, S.R.M., Liu, S.-C., Stansel, J. W., and Irving, J. E. 1995. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:17141718.Google Scholar
Paterson, A. H. and Sorrells, M. E. 1990. Inheritance of grain dormancy in white-kernelled wheat. Crop Sci. 30:2530.Google Scholar
Paterson, A. H., Tanksley, S. D., and Sorrells, M. E. 1991. DNA markers in plant improvement. Adv. Agron. 46:3990.Google Scholar
Peng, J.-R., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P., and Harberd, N. P. 1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 11:31943205.Google Scholar
Pollock, B. M. 1963. Temperature control of physiological dwarfing in peach seedlings. Plant Physiol. 37:190197.Google Scholar
Quail, P. H. and Carter, O. G. 1969. Dormancy in seeds of Avena ludoviciana and A. fatua . Aust. J. Agric. Res. 20:111.Google Scholar
Rasmussen, R. D., Hole, D., Hess, J. R., and Carman, J. G. 1997. Wheat kernel dormancy and +abscisic acid level following exposure to fluridone. J. Plant Physiol. 150:440445.Google Scholar
Riggio Bevilacqua, L. R., Fossati, F., and Dondero, G. 1987. “Callose” in the impermeable seed coat of Sesbania punicea . Ann. Bot. 59:335341.Google Scholar
Schmidt, R. 2000. Synteny: recent advances and future prospects. Curr. Opin. Plant Biol. 3:97102.Google Scholar
Schuurink, R. C., Sedee, N.J.A., and Wang, M. 1992. Dormancy of the barley grain is correlated with gibberellic acid responsiveness of the isolated aleurone layer. Plant Physiol. 100:18341839.Google Scholar
Shinomura, T. 1997. Phytochrome regulation of seed germination. J. Plant Res. 110:151161.Google Scholar
Shinomura, T., Nagatani, A., Hanzawa, H., Kubota, M., Watanabe, M., and Furuya, M. 1996. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana . Proc. Natl. Acad. Sci. USA 93:81298133.Google Scholar
Shropshire, W., Klein, W. H., and Elstad, V. B. 1961. Action spectra of photomorphogenic induction and photoinactivation of germination in Arabidopsis thaliana . Plant Cell Physiol. 2:6369.Google Scholar
Simpson, G. M. 1990. Seed Dormancy in Grasses. New York: Cambridge University Press. 297 p.Google Scholar
Song, W.-Y., Wang, G.-L., Chen, L.-L., et al. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21 . Science 270:18041806.Google Scholar
Sorrells, M. E. and Anderson, J. A. 1996. Quantitative trait loci associated with preharvest sprouting in white wheat. Pages 137142 In Walker-Simmons, M. K., ed. Proceedings of the 1995 Preharvest Sprouting Symp. in Japan. Osaka, Japan: Center for Academic Societies Japan.Google Scholar
Sreenivasulu, Y. and Amritphale, D. 2000. Changes in protein composition in cellular membranes of various parts of secondary dormant cucumber seeds treated with ethanol. Seed Sci. Res. 10:6170.Google Scholar
Steinbach, H. S., Benech-Arnold, R. L., and Sánchez, R. A. 1997. Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol. 113:149154.Google Scholar
Still, D. W. and Bradford, K. J. 1997. Endo-β-mannanase activity from individual tomato endosperm caps and radicle tips in relation to germination rates. Plant Physiol. 113:2129.Google Scholar
Still, D. W., Dahal, P., and Bradford, K. J. 1997. A single-seed assay for endo-β-mannanase activity from tomato endosperm and radicle tissues. Plant Physiol. 113:1320.Google Scholar
Symons, S. J., Simpson, G. M., and Adkins, S. W. 1987. Secondary dormancy in Avena fatua: Effect of temperature and after-ripening. Physiol. Plant. 70:419426.Google Scholar
Tanksley, S. D. 1993. Mapping polygenes. Annu. Rev. Genet. 27:205233.Google Scholar
Taylorson, R. B. 1989. Responses of redroot pigweed (Amaranthus retroflexus) and witchgrass (Panicum capillare) seeds to anesthetics. Weed Sci. 37:9397.Google Scholar
Tilsner, H. R. and Upadhyaya, M. K. 1985. Induction and release of secondary seed dormancy in genetically pure lines of Avena fatua . Physiol. Plant. 64:377382.Google Scholar
Trewavas, A. J. 1988. Timing and memory processes in seed embryo dormancy—a conceptual paradigm for plant development questions. BioEssays 6:8793.Google Scholar
van Beckum, J.M.M., Libbenga, K. R., and Wang, M. 1993. Abscisic acid and gibberellic acid-regulated responses of embryo and aleurone layers isolated from dormant and nondormant barley grains. Physiol. Plant. 89:483489.Google Scholar
Vanden Born, W. H. 1971. Green foxtail: seed dormancy, germination and growth. Can. J. Plant Sci. 51:5359.Google Scholar
Van der Schaar, W., Alonso-Blanco, C., Léon-Kloosterziel, K. M., Jansen, R. C., Van Ooijen, J. W., and Koornneef, M. 1997. QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity 79:190200.Google Scholar
Vleeshouwers, L. M., Bouwmeester, H. J., and Karssen, C. M. 1995. Redefining seed dormancy: an attempt to integrate physiology and ecology. J. Ecol. 83:10311037.Google Scholar
Vos, P., Hogers, R., Bleeker, M., et al. 1996. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:44074414.Google Scholar
Walker-Simmons, M. 1987. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol. 84:6166.Google Scholar
Wan, J., Nakazaki, T., Kawaura, K., and Ikehashi, H. 1997. Identification of marker loci for seed dormancy in rice (Oryza sativa L.). Crop Sci. 37:17591763.Google Scholar
Wang, M., Bakhuizen, R., Heimovaara-Dijkstra, S., Van Zeijl, M. J., De Vries, M. A., Van Beckum, J. M., and Sinjorgo, K.M.C. 1994. The role of ABA and GA in barley grain dormancy: a comparative study between embryo and aleurone dormancy. Russ. J. Plant Physiol. 41:577584.Google Scholar
Wang, M., Heimovaara-Dijkstra, S., and Van Duijn, B. 1995. Modulation of germination of embryos isolated from dormant and nondormant barley grains by manipulation of endogenous abscisic acid. Planta 195:586592.Google Scholar
Wang, M., van der Meulen, R. M., Visser, K., Van Schaik, H.-P., Van Duijn, B., and de Boer, A. H. 1998. Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci. Res. 8:129137.Google Scholar
Warner, R. L., Kudrna, D. A., Spaeth, S. C., and Jones, S. S. 2000. Dormancy in white-grain mutants of Chinese spring wheat (Triticum aestivum L.). Seed Sci. Res. 10:5160.Google Scholar
White, C. N., Proebsting, W. M., Heldden, P., and Rivin, C. J. 2000. Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol. 122:10811088.Google Scholar
Williams, J.G.K., Kubelik, A. R., Livak, J., Rafalski, J. A., and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:65316535.Google Scholar
Yamaguchi, S., Smith, M. W., Brown, R.G.S., Kamiya, Y., and Sun, T.- P. 1998. Phytochrome regulation and differential expression of gibberellin 3β-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10:21152126.Google Scholar