Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T09:26:06.309Z Has data issue: false hasContentIssue false

Resistance to Glyphosate in Junglerice (Echinochloa colona) from California

Published online by Cambridge University Press:  20 January 2017

Rocío Alarcón-Reverte
Affiliation:
Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616
Alejandro García
Affiliation:
Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616
Jaime Urzúa
Affiliation:
Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616
Albert J. Fischer*
Affiliation:
Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616
*
Corresponding author's E-mail: [email protected]

Abstract

A suspected glyphosate-resistant (R) junglerice population was collected from a glyphosate-R corn field near Durham in northern California where glyphosate had been applied at least twice a year for over 6 yr. Based on the amount of glyphosate required to reduce growth by 50% (ED50), the R population was 6.6 times more R than the susceptible (S) standard population. Based on the glyphosate concentration that inhibits EPSPS by 50% based on shikimate accumulation (I50) in leaf discs, R plants were four times more R than S plants. By 3 d after treatment with 0.42 kg ae ha−1 glyphosate, the S population had accumulated approximately five times more shikimate than the R population. No differences in [14C]-glyphosate uptake and translocation were detected between R and S plants. However, partial sequencing of the EPSPS gene revealed a mutation in R plants causing a proline to serine change at EPSPS position 106 (P106S). Our results reveal the first case of a P106S target site mutation associated with glyphosate resistance in junglerice.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Colegio de Postgraduados Campus Montecillo, Montecillo, Estado de México, México. C.P. 56230.

References

Literature Cited

Anonymous, . 2009. Roundup WeatherMax, herbicide product label, section 14: Annual weeds rate. Monsanto Publication No. 2009-1 63003H7-40. http://www.cdms.net/LDat/ld5UJ064.pdf. Accessed: August 16, 2012.Google Scholar
Baerson, S. R., Rodriguez, D. J., Biest, N. A., Tran, M., You, J. S., Kreuger, R. W., Dill, G. M., Pratley, J. E., and Gruys, K. J. 2002a. Investigating the mechanism of glyphosate resistance in rigid ryegrass (Lolium ridigum). Weed Sci. 50: 721730.Google Scholar
Baerson, S. R., Rodriguez, D. J., Tran, M., Feng, Y. M., Biest, N. A., and Dill, G. M. 2002b. Glyphosate-resistant goosegrass: identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129: 12651275.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2010. Growth and reproduction of junglerice (Echinochloa colona) in response to water stress. Weed Sci. 58: 132135.Google Scholar
Comai, L., Sen, L. C., and Stalker, D. M. 1983. An altered aroA gene-product confers resistance to the herbicide glyphosate. Science 221: 370371.Google Scholar
Cromartie, T. H. and Polge, N. D. 2000. An improved assay for shikimic acid and its use as a monitor for the activity of sulfosate. Proc. Weed Sci. Soc. Amer. 40: 291.Google Scholar
De Carvalho, L. B., Costa Aguiar Alves, P. L., Gonzalez-Torralva, F., Cruz-Hipolito, E. H., Rojano-Delgado, M. A., De Prado, R., Gil-Humanes, J., Barro, F., and Luque de Castro, M. D. 2012. Pool of resistance mechanisms to glyphosate in Digitaria insularis . J. Agr. Food Chem. 60: 615622.Google Scholar
Dinelli, G., Marotti, I., Bonetti, A., Minelli, M., Catizone, P., and Barnes, J. 2006. Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq. biotypes. Pestic. Biochem. Phys. 86: 3041.Google Scholar
Dinelli, G., Marotti, I., Bonetti, A., Catizone, P., Urbano, J. M., and Barnes, J. 2008. Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Res. 48: 257265.Google Scholar
DiTomaso, J. M. and Healy, E. A. 2003. Aquatic and Riparian Weeds of the West. Oakland, CA: University of California, Division of Agriculture and Natural Resources. 442 p.Google Scholar
Dolman, F., Malone, J., Storrie, A., and Preston, C. 2009. Mechanisms of glyphosate resistance in Echinochloa colona from Australia. Weed Sci. Soc. Am. Abstract 49: 286.Google Scholar
Duke, S. O. and Powles, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64: 319325.Google Scholar
Duke, S. O., Rimando, A. M., Pace, P. F., Reddy, K. N., and Smeda, R. J. 2003. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J. Agr. Food Chem. 51: 340344.Google Scholar
Dyer, W. E. 1994. Resistance to glyphosate. Pages 229241 in Powles, S. and Holtum, J., eds. Herbicide Resistance in Plants: Biology and Biochemistry. New York: CRC Lewis Publishers.Google Scholar
Feng, P. C. C., Tran, M., Chiu, T., Sammons, R. D., Heck, G. R., and CaJacob, C. A. 2004. Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Sci. 52: 498505.Google Scholar
Ferreira, E. A., Galon, L., Aspiazu, I., Silva, A. A., Concenco, G., Silva, A. F., Oliveira, J. A., and Vargas, L. 2008. Glyphosate translocation in hairy fleabane (Conyza bonariensis) biotypes. Planta Daninha 26: 637643.Google Scholar
Gaines, T. A., Cripps, A., and Powles, S. B. 2012. Evolved resistance to glyphosate in junglerice (Echinochloa colona) from the Tropical Ord River Region in Australia. Weed Technol. 26: 480484.Google Scholar
Gaines, T. A., Zhang, W. L., Wang, D. F., Bukun, B., Chisholm, S. T., Shaner, D. L., Nissen, S. J., Patzoldt, W. L., Tranel, P. J., Culpepper, A. S., Grey, T. L., Webster, T. M., Vencill, W. K., Sammons, R. D., Jiang, J. M., Preston, C., Leach, J. E., and Westra, P. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri . Proc. Natl. Acad. Sci. USA 107: 10291034.Google Scholar
Ge, X., D'Avignon, D. A., Ackerman, J. J. H., Collavo, A., Sattin, M., Ostrander, E. L., Hall, E. L., Sammons, R. D., and Preston, C. 2012. Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America and Europe: a 31P-NMR investigation. J. Agric. Food Chem. 60: 12431250.Google Scholar
Ge, X., d'Avignon, D. A., Ackerman, J. J. H., and Sammons, R. D. 2010. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Manag. Sci. 66: 345348.Google Scholar
Geiger, D. R. and Bestman, H. D. 1990. Self-limitation of herbicide mobility by phytotoxic action. Weed Sci. 38: 324329.Google Scholar
Gould, F. W., Ali, M. A., and Fairbrothers, D. E. 1972. A revision of Echinochloa in the United States. Am. Midl. Nat. 87: 3659.Google Scholar
Hanson, B. D., Shrestha, A., and Shaner, D. L. 2009. Distribution of glyphosate-resistant horseweed (Conyza canadensis) and relationship to cropping systems in the Central Valley of California. Weed Sci. 57: 4853.Google Scholar
Heap, I. 2012. The International Survey of Herbicide Resistant Weeds. www.weedscience.com. Accessed: July 15, 2012.Google Scholar
Jasieniuk, M., Ahmad, R., Sherwood, A. M., Firestone, J. L., Perez-Jones, A., Lanini, W. T., Mallory-Smith, C., and Stednick, Z. 2008. Glyphosate-resistant Italian ryegrass (Lolium multiflorum) in California: distribution, response to glyphosate, and molecular evidence for an altered target enzyme. Weed Sci. 56: 496502.Google Scholar
Kaundun, S. S., Zelaya, I. A., Dale, R. P., Lycett, A. J., Carter, P., Sharpies, K. R., and McIndoe, E. 2008. Importance of the P106S target-site mutation in conferring resistance to glyphosate in a goosegrass (Eleusine indica) population from the Philippines. Weed Sci. 56: 637646.Google Scholar
Kaundun, S. S., Dale, R. P., Zelaya, I. A., Dinelli, G., Marotti, I., McIndoe, E., and Cairns, A. 2011. A novel P106L mutation in EPSPS and an unknown mechanism(s) act additively to confer resistance to glyphosate in a South African Lolium rigidum population. J. Agr. Food Chem. 59: 32273233.Google Scholar
Klee, H. J., Muskopf, Y. M., and Gasser, C. S. 1987. Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase-sequence-analysis and manipulation to obtain glyphosate-tolerant plants. Mol. Gen. Genet. 210: 437442.Google Scholar
Koger, C. H. and Reddy, K. N. 2005. Role of absorption and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Sci. 53: 8489.Google Scholar
Linquist, B. et al. 2008. Minimum tillage could benefit California rice farmers. Calif. Agr. 62: 2429.Google Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., Hollinshead, P. H., Warner, S. A. J., and Preston, C. 2002. Investigations into the mechanism of glyphosate resistance in Lolium rigidum . Pestic. Biochem. Phys. 74: 6272.Google Scholar
Michitte, P., De Prado, R., Espinoza, N., Ruiz-Santaella, J. P., and Gauvrit, C. 2007. Mechanisms of resistance to glyphosate in a ryegrass (Lolium multiflorum) biotype from Chile. Weed Sci. 55: 435440.Google Scholar
Nandula, V. K., Reddy, K. N., Poston, D. H., Rimando, A. M., and Duke, S. O. 2008. Glyphosate tolerance mechanism in Italian ryegrass (Lolium multiflorum) from Mississippi. Weed Sci. 56: 344349.Google Scholar
Ng, C. H., Wickneswari, R., Salmijah, S., Teng, Y. T., and Ismail, B. S. 2003. Gene polymorphisms in glyphosate-resistant and -susceptible biotypes of Eleusine indica from Malaysia. Weed Res. 43: 108115.Google Scholar
Ng, C. H., Wickneswary, R., Salmijah, S., Teng, Y. T., and Ismail, B. S. 2004. Glyphosate resistance in Eleusine indica (L.) Gaertn. from different origins and polymerase chain reaction amplification of specific alleles. Aust. J. Agr. Res. 55: 407414.Google Scholar
Padgette, S. R., Re, D. B., Gasser, C. S., Eichholtz, D. A., Frazier, R. B., Hironaka, C. M., Levine, E. B., Shah, D. M., Fraley, R. T., and Kishore, G. M. 1991. Site-directed mutagenesis of a conserved region of the 5-enolpyruvylshikimate-3-phosphate synthase active-site. J. Biol. Chem. 266: 2236422369.Google Scholar
Perez-Jones, A., Park, K. W., Colquhoun, J., Mallory-Smith, C., and Shaner, D. 2005. Identification of glyphosate-resistant Italian ryegrass (Lolium multiflorum) in Oregon. Weed Sci. 53: 775779.Google Scholar
Perez-Jones, A., Park, K. W., Polge, N., Colquhoun, J., and Mallory-Smith, C. A. 2007. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum . Planta 226: 395404.Google Scholar
Pittelkow, C. M., Fischer, A. J., Moechnig, M. J., Hill, J. E., Koffler, K. B., Mutters, R. G., Greer, C. A., Cho, Y. S., van Kessel, C., and Linquist, B. A. 2012. Agronomic productivity and nitrogen requirements of alternative tillage and crop establishment systems for improved weed control in direct-seeded rice. Field Crops Res. 130: 128137.Google Scholar
Powles, S. B., Lorraine-Colwill, D. F., Dellow, J. J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46: 604607.Google Scholar
Powles, S. B. and Preston, C. 2006. Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. Weed Technol. 20: 282289.Google Scholar
Powles, S. B. and Yu, Q. 2010. Evolution in action: plants resistant to herbicides. Annu. Rev. Plant Biol. 61: 317347.Google Scholar
Pratley, J., Baines, P., Eberbach, P., Incerti, M., and Broster, J. 1996. Glyphosate resistance in annual ryegrass. Pages 122 in Virgona, J. and Michalk, D., eds. Proceedings of the 11th Annual Conference of the Grasslands Society of New South Wales. Wagga Wagga, Australia: The Grasslands Society of NSW.Google Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassay analysis using R. J. Stat. Softw. 12: 122.Google Scholar
Salas, R. A., Dayan, F. E., Pan, Z., Watson, S. B., Dickson, J. W., Scott, R. C., and Burgos, N. R. 2012. EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne spp. multiflorum) from Arkansas, USA. Pest Manag. Sci. 68: 12231230.Google Scholar
Shaner, D. L. 2010. Testing methods for glyphosate resistance. Pages 93118 in Nandula, V. K., ed., Glyphosate Resistance in Crops and Weeds: History, Development and Management, Hoboken, New Jersey: John Wiley.Google Scholar
Simarmata, M. and Penner, D. 2008. The basis for glyphosate resistance in rigid ryegrass (Lolium rigidum) from California. Weed Sci. 56: 181188.Google Scholar
Singh, B. K. and Shaner, D. L. 1998. Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Technol. 12: 527530.Google Scholar
Staden, R. 1996. The Staden sequence analysis package. Mol. Biotechnol. 5: 233241.Google Scholar
Stalker, D. M., Hiatt, W. R., and Comai, L. 1985. A single amino-acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J. Biol. Chem. 260: 47244728.Google Scholar
Steinrucken, H. C. and Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic-acid 3-phosphate synthase. Biochem. Biophys. Res. Communications 94: 12071212.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 27312739.Google Scholar
Tranel, P. J., Riggins, C. W., Bell, M. S., and Hager, A. G. 2011. Herbicide resistances in Amaranthus tuberculatus: a call for new options. J. Agr. Food Chem. 59: 58085812.Google Scholar
Travlos, I. S. and Chachalis, D. 2010. Glyphosate-resistant hairy fleabane (Conyza bonariensis) is reported in Greece. Weed Technol. 24: 569573.Google Scholar
Valverde, B. E., Riches, C. R., and Caseley, J. C. 2000. Prevention and management of herbicide resistant weeds in rice: experiences from Central America with Echinochloa colona . San José, Costa Rica: Cámara de Insumos Agropecuarios de Costa Rica. 123 p.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49: 703705.Google Scholar
Vila-Aiub, M. M., Balbi, M. C., Distefano, A. J., Fernandez, L., Hopp, E., Yu, Q., and Powles, S. B. 2012. Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake. Pest Manag. Sci. 68: 430436.Google Scholar
Wakelin, A. M., Lorraine-Colwill, D. F., and Preston, C. 2004. Glyphosate resistance in four different populations of Lolium rigidum is associated with reduced translocation of glyphosate to meristematic zones. Weed Res. 44: 453459.Google Scholar
Wakelin, A. M. and Preston, C. 2006. A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res. 46: 432440.Google Scholar
Westra, P., Wiersma, A., Chisholm, S. T., Stahlman, P. W., Godar, A. S., and Currie, R. S. 2012. Mechanism of glyphosate resistance in central great plains kochia. Abstr. 433 in Proc. Weed Sci. Soc. Am.Google Scholar
Westwood, J. H. and Weller, S. C. 1997. Cellular mechanisms influence differential glyphosate sensitivity in field bindweed (Convolvulus arvensis) biotypes. Weed Sci. 45: 211.Google Scholar
Woodburn, A. T. 2000. Glyphosate: production, pricing and use worldwide. Pest Manag. Sci. 56: 309312.Google Scholar
Yabuno, T. 1966. Biosystematic study of genus Echinochloa . Jpn. J. Bot. 19: 277323.Google Scholar
Yu, Q., Abdallah, I., Han, H. P., Owen, M., and Powles, S. 2009. Distinct non-target site mechanisms endow resistance to glyphosate, ACCase, and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum . Planta 230: 713723.Google Scholar
Yu, Q., Cairns, A., and Powles, S. 2007. Glyphosate, paraquat, and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 225: 499513.Google Scholar