Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T16:28:18.227Z Has data issue: false hasContentIssue false

Physiological Responses of Soybean (Glycine max) Plants to Metribuzin

Published online by Cambridge University Press:  12 June 2017

C. Fedtke*
Affiliation:
Pflanzenschutz AT, Biologische Forschung, Bayer AG, 5090 Leverkusen, West Germany

Abstract

Soybean [Glycine max (L.) Merr. ‘Hark’] plants responded similarly to a sublethal application of metribuzin [2-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] or to low light intensities. Both treatments increased soluble amino acid, ATP, nitrate reductase, and nitrate levels (up to 67, 140, 190, and 10,000%, respectively) and decreased soluble reducing sugars (33%), malate levels (86%), and the chlorophyll a/b ratio (24%). The similar response of light-limited and of chemically photosynthesis-inhibited plants is thought to be induced by a carbohydrate stress or another parameter related to a decreased rate of photosynthetic electron flow. However, during the induction process in shaded plants, light quality might play an important role in some cases. The results obtained with metribuzin and soybean plants are compared to and discussed together with (a) the results obtained by other authors working with s-triazine herbicides and (b) results obtained with methabenzthiazuron [N-(benzothiazol-2-yl)-N,N′-dimethylurea] in earlier experiments.

Type
Research Article
Copyright
Copyright © 1979 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Arndt, F. and Kötter, C. 1968. Zur Selektivität von Phenmedipham als Nachauflaufherbizid in Beta-Rüben. Weed Res. 8:259271.CrossRefGoogle Scholar
2. Aslam, M. and Huffacker, R. C. 1973. Effect of DCMU, simazine and atrazine on nitrate reductase activity in Hordeum vulgare in vitro and in vivo . Physiol Plant. 28:400404.CrossRefGoogle Scholar
3. Ballantine, J. E. M. and Forde, B. J. 1970. The effect of light intensity and temperature on plant growth and chloroplast ultrastructure in soybean. Am. J. Bot. 57:11501159.Google Scholar
4. Bunce, J. A., Patterson, D. T., Peet, M. M., and Alberte, R. S. 1977. Light acclimation during and after leaf expansion in soybean. Plant Physiol. 60:255258.CrossRefGoogle ScholarPubMed
5. Draber, W., Dickoré, K., Büchel, K. H., Trebst, A., and Pistorius, E. 1968. Struktur-Aktivität-Korrelation bei 1,2,4-Triazinonen, einer neuen Gruppe von Photosynthesehemmern. Naturwissenschaft. 55:446.Google Scholar
6. Draber, W., Büchel, K. H., and Timmler, H. 1974. Structure, activity, and selectivity of 1,2,4-triazinone photosynthesis inhibitors. Quantitative studies. Pages 100116 in Kohn, G. K., ed. Mechanism of pesticide action, ACS Symposium Series 2, Los Angeles.Google Scholar
7. Eastin, E. F. and Davis, D. E. 1967. Effects of atrazine and hydroxyatrazine on nitrogen metabolism of selected species. Weeds 15:306309.Google Scholar
8. Fedtke, C. 1972. Influence of photosynthesis-inhibiting herbicides on the regulation of crop plant metabolism. Pestic. Biochem. Physiol. 2:312323.Google Scholar
9. Fedtke, C. 1973. Effects of the herbicide methabenzthiazuron on the physiology of wheat plants. Pestic. Sci. 4:653664.CrossRefGoogle Scholar
10. Fedtke, C. 1974. Changed physiology in wheat plants treated with the herbicide methabenzthiazuron. Naturwissenschaft. 61:272273.CrossRefGoogle ScholarPubMed
11. Fedtke, C. 1974. Influence of methabenzthiazuron on ATP-level and protein synthesis in wheat. Pestic. Biochem. Physiol. 4:386392.Google Scholar
12. Fedtke, C., Deichgräber, G., and Schnepf, E. 1977. Herbicide induced changes in wheat chloroplast ultrastructure and chlorophyll a/b ratio. Biochem. Physiol. Pflanzen 171:307312.CrossRefGoogle Scholar
13. Grahl, H. and Wild, A. 1972. Die Variabilität der Grösse der Photosyntheseeinheit bei Licht- und Schattenpflanzen. Untersuchungen zur Photosynthese von experimentell induzierten Licht- und Schattentypen von Sinapis alba . Z. Pflanzenphysiol. 67:443453.Google Scholar
14. Hewitt, E. J. 1975. Assimilatory nitrate-nitrite reduction. Annu. Rev. Plant Physiol. 26:73100.Google Scholar
15. Kleudgen, H. K. 1978. The influence of the herbicide methabenzthiazuron on the synthesis of plastidic lipids in Hordeum vulgare seedlings. Pestic. Biochem. Physiol. 9:5760.CrossRefGoogle Scholar
16. Lichtenthaler, H. K. 1969. Localization and functional concentrations of lipoquinones in chloroplasts. Pages 304314 in Metzner, H., ed. Proc. Int. Congr. Photosynthesis Res., Vol. I. H. Laupp Press, Tübingen.Google Scholar
17. Nadar, H. M., Clegg, M. D., and Maranville, J. W. 1975. Promotion of sorghum callus growth by the s-triazine herbicides. Plant Physiol. 56:747751.Google Scholar
18. Van Oorschot, J. L. P. 1970. Influence of herbicides on photosynthetic activity and transpiration rate of intact plants. Pestic. Sci. 1:3337.CrossRefGoogle Scholar
19. Pillai, C. G. P. and Davis, D. E. 1973. s-Triazine effects on seed germination and hypocotyl hook opening. Weed Sci. 21:461464.Google Scholar
20. Pulver, E. L. and Ries, S. K. 1973. Action of simazine in increasing plant protein content. Weed Sci. 21:233237.CrossRefGoogle Scholar
21. Radosevich, S. R. 1977. Mechanism of atrazine resistence in lambsquarters and pigweed. Weed. Sci. 25:316318.CrossRefGoogle Scholar
22. Ries, S. K., Chmiel, H., Dilley, D. R., and Filner, P. 1967. The increase in nitrate reductase activity and protein content of plants treated with simazine. Proc. Nat. Acad. Sci. U.S.A. 58:526532.CrossRefGoogle ScholarPubMed
23. Schmidt, R. R., Draber, W., Eue, L., and Timmler, H. 1973. Herbicidal activity and selectivity of new 3-alkyl-4-amino-6-aryl-1,2,4,-triazin-5-ones. Pestic. Sci. 6:239244.CrossRefGoogle Scholar
24. Schmidt, R. R. and Fedtke, C. 1977. Metamitron activity in tolerant and susceptible plants. Pestic. Sci. 8:611617.CrossRefGoogle Scholar
25. Smith, A. E. and Wilkinson, R. E. 1974. Differential absorption, translocation and metabolism of metribuzin [4-amino-6-t-butyl-3-(methylthio)-as-triazine-5(4H)one] by soybean cultivars. Physiol. Plant. 32:253257.CrossRefGoogle Scholar
26. Tischer, W. and Strotmann, H. 1977. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim. Biophys. Acta 460:113125.Google Scholar
27. Trebst, A. and Wietoska, H. 1975. Hemmung des photosynthetischen Elektronentransports von Chloroplasten durch Metribuzin. Z. Naturforsch. 30C:499504.Google Scholar
28. Tweedy, J. A. and Ries, S. K. 1967. Effect of simazine on nitrate reductase activity in corn. Plant Physiol. 42:280282.CrossRefGoogle ScholarPubMed
29. Wu, M. T., Singh, B., and Salunkhe, D. K. 1972. Influence of foliar application of s-triazine compounds on fresh weight, dry weight, chemical composition, and enzymatic activity of pea and sweet corn seedlings J. Exp. Bot. 23:793800.CrossRefGoogle Scholar