Article contents
Physiological Responses of Downy Brome (Bromus tectorum) Roots to Pseudomonas fluorescens Strain D7 Phytotoxin
Published online by Cambridge University Press: 12 June 2017
Abstract
Effects of a crude preparation of a phytotoxin from Pseudomonas fluorescens strain D7 (D7) on various physiological processes were evaluated in roots of downy brome seedlings. Cell division, respiration, and synthesis of protein, RNA, and DNA were not inhibited or only slightly inhibited under treatment conditions that caused substantial inhibition of root elongation. Significant inhibition of each of these processes was detected by known inhibitors included in each study to verify sensitivity of the procedures used. Disruption of lipid synthesis and membrane integrity by the crude phytotoxin preparation was significant and might account for inhibition of root elongation. Additional studies on these two possible target sites were conducted with partially purified phytotoxin. In intact roots, incorporation of [14C]acetate and [14C]malonic acid into lipophilic fractions was reduced by 50% or greater during a 1-h treatment with concentrations between 10 and 100 μg ml−1 of the partially purified phytotoxin preparation. In a membrane integrity study, a similar treatment increased radioactivity efflux 250% from seedlings preloaded with scyllo-[R-3H]inositol. Additionally, disruption of lipid synthesis and membrane integrity by the partially purified phytotoxin was dose dependent. Collectively, these findings indicate that the D7 phytotoxin may inhibit downy brome root elongation through its effects on lipid synthesis and membrane integrity.
Keywords
- Type
- Special Topics
- Information
- Copyright
- Copyright © 1993 by the Weed Science Society of America
References
Literature Cited
- 13
- Cited by