Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-31T23:33:56.044Z Has data issue: false hasContentIssue false

Physiological Competence of Atrazine-Resistant Strains of the Photosynthetic Bacterium Rhodobacter sphaeroides (Rhodospirillaceae)

Published online by Cambridge University Press:  12 June 2017

Alfred E. Brown
Affiliation:
Ala. Agric. Exp. Stn. Dep. Bot. and Microbiol., Auburn Univ., AL 36849-5407
Bryan Truelove
Affiliation:
Ala. Agric. Exp. Stn. Dep. Bot. and Microbiol., Auburn Univ., AL 36849-5407
Claudia T. Highfill
Affiliation:
Ala. Agric. Exp. Stn. Dep. Bot. and Microbiol., Auburn Univ., AL 36849-5407
Scott G. Smith
Affiliation:
Ala. Agric. Exp. Stn. Dep. Bot. and Microbiol., Auburn Univ., AL 36849-5407

Abstract

Two parameters of physiological competence, rate of CO2 fixation and intraspecific competitiveness, were determined for one or more atrazine-resistant isolates of the photosynthetic bacterium Rhodobacter sphaeroides. Measured over a 2-h period under optimal conditions, two of the resistant isolates fixed CO2 at a greater rate than the atrazine-susceptible, wild-type organism. In a mixed culture study, an atrazine-resistant strain was able to grow and compete successfully with the susceptible, wild-type strain for at least 14 days.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1988 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Brown, A. E., Eiserling, F. A., and Lascelles, J. 1972. Bacteriochlorophyll synthesis and the ultrastructure of wild-type and mutant strains of Rhodopseudomonas sphaeroides . Plant Physiol. 50:743746.Google Scholar
2. Brown, A. E., Gilbert, C. W., Guy, R., and Arntzen, C. J. 1984. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides . Proc. Natl. Acad. Sci. U.S.A. 81:63106314.Google Scholar
3. de Vitry, C. and Diner, B. A. 1984. Photoaffinity labeling of the azidoatrazine receptor site in reaction centers of Rhodopseudomonas sphaeroides . FEBS Lett. 167:327331.Google Scholar
4. deWitt, C. T. 1960. On competition. Versl. Landbouwkd. Onderz. L. 66:182.Google Scholar
5. Erickson, J. M., Rahire, M., Rochaix, J. D., and Mets, L. 1985. Herbicide resistance and cross resistance: Changes at three distinct sites in the herbicide-binding protein. Science 228:204207.Google Scholar
6. Gilbert, C. W., Williams, J.G.K., Williams, K.A.L., and Arntzen, C. J. 1985. Herbicide action in photosynthetic bacteria. Page 6771 in Molecular Biology of the Photosynthetic Apparatus. Steinback, K. E., Bonitz, S., Arntzen, C. J., and Bogorad, L., eds. Cold Spring Harbor Lab., New York.Google Scholar
7. Gressel, J. 1985. Biotechnologically conferring herbicide resistance in crops: The present realities. Page 489504 in Molecular Form and Function of the Plant Genome. van Vloten-Doting, L., Groot, G. S., and Hall, T. C., eds. Plenum Press, New York.Google Scholar
8. Gressel, J., Ammon, H. U., Fogelfors, H., Gasques, J., Kay, Q.O.N., and Kess, K. 1982. Discovery and distribution of herbicide-resistant weeds outside North America. Page 3155 in Herbicide Resistance in Plants. LeBaron, H. M., and Gressel, J., eds. John Wiley and Sons, New York.Google Scholar
9. Hirschberg, J. and McIntosh, L. 1983. Molecular basis of herbicide resistance in Amaranthus hybridus . Science 222:13461348.CrossRefGoogle ScholarPubMed
10. Imhoff, J. F., Truper, H. G., and Pfennig, N. 1984. Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria.” Int. J. Syst. Bacteriol. 34:340343.Google Scholar
11. Kaplan, S. and Arntzen, C. J. 1982. Photosynthetic membrane structure and function. Page 65151 in Photosynthesis: Energy Conversion by Plants and Bacteria. Vol. 1. Govindjee, , ed. Academic Press, New York.CrossRefGoogle Scholar
12. Michel, H., Epp, O., and Deisenhofer, J. 1986. Pigment-protein interactions in the photosynthetic reaction center from Rhodopseudomonas viridis . EMBO J. 5:24412445.CrossRefGoogle Scholar
13. Ort, D. R., Ahrens, W. H., Martin, B., and Stoller, E. W. 1983. Comparison of photosynthetic performance in triazine-resistant and susceptible biotypes of Amaranthus hybridus . Plant Physiol. 72:925930.Google Scholar
14. Steinback, K. E., McIntosh, L., Bogorad, L., and Arntzen, C. J. 1981. Identification of the triazine receptor protein as a chloroplast gene product. Proc. Natl. Acad. Sci. U.S.A. 78:74637467.Google Scholar
15. Sutton, W. F., Brown, A. E., and Truelove, B. 1984. Atrazine- and diuron-resistant strains of Rhodopseudomonas sphaeroides . Weed Sci. 32:664669.CrossRefGoogle Scholar