Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T19:02:14.228Z Has data issue: false hasContentIssue false

Persistence of Several Dinitroaniline Herbicides as Affected by Soil Moisture

Published online by Cambridge University Press:  12 June 2017

K. E. Savage*
Affiliation:
South. Weed Sci. Lab., Agric. Res. Serv., U. S. Dep. Agric., Stoneville, MS 38776

Abstract

The Persistence of substituted dinitroaniline herbicides in soil varied widely. First-order kinetics were used to describe the dissipation rates. Half-lives of the herbicides in moist soil ranged from 29 to 124 days in two soil types under greenhouse conditions. Flooding the soil significantly increased the dissipation rate of trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine), fluchloralin [N-(2-chloroethyl)-2,6-dinitro-N-propyl-4-(trifluoromethyl)aniline], profluralin [N-(cyclopropylmethyl)-α,α,α-trifluoro-2,6-dinitro-N-propyl-p-toluidine], and pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine]. Dissipation rates of dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine) and butralin [4-(1,1-dimethylethyl)-N-(1-methylpropyl)-2,6-dinitrobenzenamine] were affected to a lesser extent by flooding. Volatilization of trifluralin, fluchloralin, and ethalfluralin [N-ethyl-N-(2-methyl-2-propenyl)-2,6-dinitro-4-(trifluoromethyl)benzenamine] from Bosket sandy loam was reduced by flooding when compared to volatilization from the same soil with a moisture content equivalent to field capacity. Pendimethalin exhibited low volatility. The effect of flooding on dissipation rates is apparently not due to increased volatilization.

Type
Research Article
Copyright
Copyright © 1978 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bardsley, C. E., Savage, K. E., and Walker, J. C. 1968. Trifluralin behavior in soil. II. Volatilization as influenced by concentration, time, soil moisture content, and placement. Agron. J. 60:8992.CrossRefGoogle Scholar
2. Gingerich, L. L. and Zimdahl, R. L. 1975. Soil persistence of isopropalin and oryzalin. Weed Sci. 24:431434.Google Scholar
3. Harper, L. A., White, A. W. Jr., Bruce, R. R., Thomas, A. W., and Leonard, R. A. 1976. Soil and microclimate effects on trifluralin volatilization. J. Environ. Qual. 5:236242.CrossRefGoogle Scholar
4. Harvey, R. G. 1973. Field comparison of twelve dinitroaniline herbicides. Weed Sci. 21:512516.CrossRefGoogle Scholar
5. Harvey, R. G. 1973. Relative phytotoxicities of dinitroaniline herbicides. Weed Sci. 21:517520.Google Scholar
6. Harvey, R. G. 1974. Soil adsorption and volatility of dinitroaniline herbicides. Weed Sci. 22:120124.Google Scholar
7. Horowitz, M. 1969. Evaluation of herbicide persistence in soil. Weed Res. 9:314321.Google Scholar
8. Hyzak, D. L. and Zimdahl, R. L. 1974. Rate of degradation of metribuzin and two analogs in soil. Weed Sci. 22:7479.Google Scholar
9. Murray, D. S., Santelmann, P. W., and Greer, H. A. L. 1973. Differential phytotoxicity of several dinitroaniline herbicides. Agron. J. 65:3436.CrossRefGoogle Scholar
10. Oliver, L. R. and Frans, R. E. 1968. Inhibition of cotton and soybean roots from incorporated trifluralin and persistence in soil. Weed Sci. 16:199203.Google Scholar
11. Parka, S. J. and Tepe, J. B. 1969. The disappearance of trifluralin from field soils. Weed Sci. 17:119122.Google Scholar
12. Parochetti, J. V., Dec, G. W. Jr., and Burt, G. W. 1976. Volatility of eleven dinitroaniline herbicides. Weed Sci. 24: 529532.Google Scholar
13. Parr, J. F. and Smith, S. 1973. Degradation of trifluralin under laboratory conditions and soil anaerobiosis. Soil Sci. 115:5563.CrossRefGoogle Scholar
14. Probst, G. W., Golab, T., Herberg, R. J., Holzer, F. J., Parka, S. J., Van der Schans, C., and Tepe, J. B. 1967. Fate of trifluralin in soils and plants. J. Agric. Food Chem. 15:592599.Google Scholar
15. Savage, K. E. 1973. Nitralin and trifluralin persistence in soil. Weed Sci. 21:285288.Google Scholar
16. Savage, K. E. 1977. Metribuzin persistence in soil. Weed Sci. 23:5559.Google Scholar
17. Savage, K. E. and Barrentine, W. L. 1969. Trifluralin persistence as affected by depth of soil incorporation. Weed Sci. 17:349352.Google Scholar
18. Spencer, W. F. and Cliath, M. M. 1974. Factors affecting vapor loss of trifluralin from soil. J. Agric. Food Chem. 22:987991.Google Scholar
19. Swann, C. W. and Behrens, R. 1972. Trifluralin vapor emission from soil. Weed Sci. 20:147149.Google Scholar
20. Weber, J. B. and Monaco, T. J. 1972. Review of the chemical and physical properties of the substituted dinitroaniline herbicides. Proc. South. Weed Sci. Soc. 25:3137.Google Scholar
21. Willis, G. H., Wander, R. C., and Southwick, L. M. 1974. Degradation of trifluralin in soil suspension as related to redox potential. J. Environ. Qual. 3:262265.Google Scholar
22. White, A. W. Jr., Harper, L. A., Leonard, R. A., and Turnbull, J. W. 1977. Trifluralin volatilization losses from a soybean field. J. Environ. Qual. 6:105110.CrossRefGoogle Scholar
23. Zimdahl, R. L. and Gwynn, S. M. 1977. Soil degradation of three dinitroanilines. Weed Sci. 25:247251.Google Scholar